
                              
Adobe Technical Journal
Making a plug-in scripting-aware for Photoshop 4.0
Rev. 2

Andrew Coven
Photoshop Developer Support Engineer
Adobe Systems, Incorporated

gapdevsup@adobe.com

1.0  Abstract
Making a plug-in scripting-aware for Adobe Photoshop 4.0

The Adobe® Photoshop® 4.0 application programming interface introduces a 
new feature for automation: actions. Controlled by the user via the actions 
palette, plug-ins can execute pre-defined commands and batches to allow the 
user to automate routine and difficult tasks from a single button-click. This 
article details the process used to update two Adobe Photoshop 3.0.5 plug-
ins, Dissolve and DummyScan (which was renamed GradientImport), to make 
them scripting-aware and controllable via the actions palette.

2.0  Introduction
Welcome to Adobe Photoshop 4.0 Actions

The Adobe® Photoshop® 4.0 application programming interface (API) 
extends the 3.0.5 specification to include a number of new items. One that 
affects all the plug-in types and specifications is the new automation system. 
The main user interface for the automation system is the actions palette. The 
actions palette allows the user to specify commands and plug-ins that are 
scripting-aware and record multiple events into actions that can be executed 
with a single mouse-click.
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 1



            
A folder or group of files can also be controlled so that actions can be applied 
in a batch. This is called batch-processing and is part of the Adobe Photoshop 
4.0 actions palette.

All plug-ins can be controlled by the scripting system as execute-only 
commands. This means, whether the plug-in is scripting-aware or not, the 
action system can execute the plug-in as if the user had invoked it from its 
menu.

A scripting-aware plug-in, however, goes further, and allows the action 
system to control your plug-in’s parameters automatically. This means that, 
unless there is an error or a parameter that your plug-in needs that it didn’t 
get, your plug-in can operate silently, not needing to show its user interface 
and interact with the user. This is extremely valuable for batch-processing and 
generating special effects that require numerous commands and parameters.

2.1  Converting 3.0.5 to 4.0

My task was to take the existing plug-ins that shipped with the 3.0.5 software 
development kit (SDK) and convert them all to the 4.0 API spec. This proved 
to be fairly straight-forward for some plug-in types, such as simple filters, and 
more involved for others, such as Import modules, especially with ones that 
do multiple imports.

This article will detail how I converted two plug-ins, the Filter plug-in module 
Dissolve and the Import plug-in module, GradientImport, to be scripting-
aware.

Figure 1: Actions palette
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 2



                
The filter plug-in was vastly simpler, so I’ll start with that, and then detail the 
process for GradientImport, which required additional code to handle the 
multiple import routines.

2.2  Scope of this article

2.2.1  More detail is in the SDK

Intimate details on all the scripting parameters and callback suites are 
available in the Adobe® Photoshop® 4.0 SDK, which is available at Adobe’s 
web site:

http://www.adobe.com/supportservice/devrelations/sdks.html

This article will only address the callbacks and structures that were pertinent 
to updating the two plug-in example modules. There is much more to the 
scripting system than is covered in this document. I recommend you read the 
SDK for more detail.

2.2.2  Macintosh or Windows?

Scripting implementation, recording, and playback are all part of the Adobe 
Photoshop API. This means that, except in a few rare exceptions, the 
callbacks, data structures, and parameters are all exactly the same on both 
Macintosh and Windows. This article shows Macintosh user interface 
examples, but the discussion and examples are comparable, if not exactly the 
same, on Windows.

3.0  Starting out

3.1  Basic scripting approach

The approach to creating a scripting-aware plug-in is detailed in the scripting 
chapter of the Photoshop SDK programmer’s guide:

1. Look at your user interfaces and describe the parameters as human-
readable text;

2. Create a terminology resource for your plug-in and your PiPL 
HasTerminology property;

3. Update your plug-in code to record scripting events and objects;

4. Update your plug-in code to be automated by (playback) scripting 
events and objects.
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 3



   
With this in mind, I looked at the user interface for the Dissolve filter. This 
was the same both on Macintosh and Windows. The Macintosh interface is 
shown in Figure 2.

After looking at my interface, I was able to describe it as these elements:

1. A button, “OK”, which I don’t need to be recordable.

2. A button, “Cancel”, which I don’t need to be recordable.

3. An amount, expressed as an integer from 1 to 100 representing a 
percentage.

4. A disposition, expressed as a textual enumeration of a mutually-
exclusive list of options, either “Clear”, “Cool”, “Hot”, or “Sick”.

5. A flag for “entire image”, expressed as a boolean value of either yes or 
no.

This should look familiar. It is reminiscent of the resource text used to 
describe Macintosh dialog items.

When describing these items, it’s important to keep in mind how they will 
look when represented in the actions palette. Since the actions palette does 
get loaded with text, it makes sense to use single labels whenever possible 
and where it will be more readable to the user. I could have used four 
booleans for “Clear”, “Cool”, “Hot”, and “Sick”, but since “Disposition” 
should always only be one thing, it makes more sense to have the actions 
palette display:

Dissolve
Amount: 20%
Disposition: Cool

Figure 2: Dissolve filter user interface
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 4



            
Than something like:

Dissolve
Amount: 20%
without Clear
with Cool
without Hot
without Sick

And speaking of booleans, it’s usually much better form to always leave the 
default value of a boolean as implied instead of explicitly showing it in the 
actions palette. Again, because the palette can get pretty large, it’s better to 
only store boolean values that are different than your default. For instance, 
in the example above, “Entire Image” isn’t listed in the palette because it was 
in its default (off) state. If it is checked, then I would store it in the action 
descriptor and it would get displayed as:

Dissolve
Amount: 20%
Disposition: Cool
with Entire Image

4.0  Creating a terminology resource

4.1  AppleScript/AppleEvents

AppleScript and AppleEvents are the Macintosh’s automation system. The 
Photoshop 4.0 scripting system is based heavily on the programming 
architecture defined by Apple. Most users think of AppleScript and 
AppleEvents from the user perspective: the Macintosh script editor, firing off 
events to different applications to automate procedures. What I’ll be 
describing here is the internal workings necessary to define events to an 
external system. In this case, the plug-ins, such as Dissolve, must take on extra 
descriptors that make their parameter’s available to the host, in this case, 
Adobe Photoshop 4.0. The terminology resource is the first internal 
description system that bridges the gap between the plug-ins programming 
parameters and the external automation system.

And, as stated, the Photoshop 4.0 automation system, while designed around 
the AppleScript/AppleEvent model, has been created to integrate fully with 
OLE Automation on Windows. More information on that is available in the 
appendix of the Photoshop SDK Guide.

4.2  Start with the examples

The terminology resource is a standard AppleScript/AppleEvent 'aete' 
resource. The terminology resource is a bit cumbersome, so I always 
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 5



                                                   
recommend starting with the example code. In this case, I had to make it 
from scratch. First, I chose to define some common parameters that would 
change from plug-in to plug-in:

#define vendorName "AdobeSDK" // unique vendor name
#define ourSuiteID 'sdK1' // must follow id guidelines
#define ourClassID ourSuiteID // must be unique, but can be suite id
#define ourEventID 'disS' // must follow id guidelines
#define ResourceID 16000 // typical id for plug-ins
#define uniqueString "" // empty

Then, I created the terminology resource:

resource 'aete' (ResourceID, purgeable)

{ // aete version and language specifiers:
1, 0, english, roman,

{ // vendor suite name:
vendorName, // “AdobeSDK”'
"Adobe example plug-ins", // optional description
ourSuiteID, // suite id ‘sdK1’
/* This is extremely important. All IDs, keys, and names must be unique. The SDK 
describes a naming convention that must be followed explicitly. Your scripting keys 
and IDs (unsigned32) must always follow these rules:
1. They must start with a lowercase letter.
2. They must contain at least one uppercase letter.
3. They cannot be all lowercase.
4. They cannot be all uppercase.
More below when we get to keys. */
1, // suite code, must be 1
1, // suite level, must be 1
{ // structure for filters. Unique filter name:

vendorName " dissolve", // “AdobeSDK Dissolve”
"dissolve noise filter", // optional description
ourClassID,

// class id must be unique or suite id. Suite id ‘sdK1’.
ourEventID, // unique event id ‘disS’

NO_REPLY, // never a reply
IMAGE_DIRECT_PARAMETER,

// direct parameter. See PIActions.h for other macros.
{ // parameters:

"amount", // parameter name
/* must be predefined parameter name and key from PIActions.h or unique 
name and key id. See ‘disposition’ for example. */
keyAmount, // parameter key
/* must be predefined parameter key from PIActions.h or unique key id. */
typeFloat, // parameter type
// typeInteger, typeBoolean, typeText, etc., all defined in PIActions.h
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 6



                         
"dissolve amount", // optional description
flagsSingleParameter, // parameter flags
// Other parameters in PIActions.h

// Second parameter:
vendorName " disposition",

// unique name “AdobeSDK disposition”
keyDisposition, // unique key ‘disP’
typeMood, // unique type ‘mooD’
"dissolve disposition", // optional description
flagsEnumeratedParameter // parameter flags for enum

vendorName " entire image”,

// unique name “AdobeSDK entire image”
keyEntireImage, // unique key ‘entI’
typeBoolean,
flagsSingleParameter

} // close parameters
}, // close filter structure
{}, // plug-in classes for all other plug-ins here (we’ll use this later)
{}, // comparison ops (not supported)
{ // any enumerations. We have one, typeMood:

typeMood, // unique type ‘mooD’
{

vendorName " clear",

// unique name “AdobeSDK clear”
dispositionClear, // unique key ‘moD0’
"clear headed", // optional description

vendorName " cool",

// unique name “AdobeSDK cool”
dispositionCool, // unique key ‘moD1’
"got the blues", // optional description

vendorName " hot",

// unique name “AdobeSDK hot”
dispositionHot, // unique key ‘moD2’
"red-faced", // optional description

vendorName " sick",

// unique name “AdobeSDK sick”
dispositionSick, // unique key ‘moD3’
"green with envy" // optional description

} // close typeMood
} // close enumerations

} // close vendor suite
}; // close ‘aete’
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 7



The terminology resource is parsed on the Macintosh side by a standard 
template included with most compilers. On the Windows side, it is 
precompiled along with the 'PIPL' resource and then parsed by the 
Photoshop resource file converter, CNVTPIPL.EXE. Either way, the 
Dissolve.r file is converted into a working resource that is used at runtime 
by the host.

4.3  Add the HasTerminology resource to your PiPL

Once I had a complete terminology resource, I have to tell Photoshop where 
to find it, since a single plug-in file can have multiple modules in it. To do 
that, a new PiPL type has been added, HasTerminology. It’s syntax is:

HasTerminology { ourClassID, ourEventID, ResourceID, uniqueString }

Just to review, in the case of examples, I defined:

#define vendorName "AdobeSDK" // unique vendor name
#define ourSuiteID 'sdK1' // must follow id guidelines
#define ourClassID ourSuiteID // must be unique, but can be suite id
#define ourEventID 'disS' // must follow id guidelines
#define ResourceID 16000 // typical id for plug-ins
#define uniqueString "" // empty

The AppleScript and AppleEvent architecture makes all key and name 
dictionaries global, which is why unique key/name pairs are required. A 
predefined dictionary of common terms is defined in PIActions.h. You can 
use those keys and their obvious names (keyColor, name “Color”) instead of 
having to create unique key and name pairs. I recommend using the standard 
keys whenever you possibly can.

If you define a uniqueString, then your plug-in will stay scoped only to 
Photoshop and will not have to worry about having globally unique names. 
But you still have to worry about conflicting with your own other suites using 
that same uniqueString. This means that I would not have had to use key 
names such as “AdobeSDK disposition”—I could have just used “disposition.” 
I chose to keep everything scoped globally for future AppleScript/AppleEvent 
compatibility.

5.0  Creating a scripting recording function

The next step for Dissolve was to record my parameters. There are a number 
of utility routines defined in PIUtilities.h and PIUtilities.c to make 
reading and writing from descriptors easier than having to access the 
procedures directly through the callback structure. You cannot check a 
scripting playback function, nor whether a terminology resource is correct, 
until some parameters are handed to Photoshop.
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 8



5.0.1  To use globals or not to use globals, that is the question!

For versions of Photoshop prior to 4.0, the only way to track global variables 
was for you to allocate the memory yourself and store the global values in a 
parameter handle that was handed back to the plug-in on subsequent 
interations.

The Photoshop 4.0 scripting system will always pass your plug-in a descriptor 
at every selector call. A descriptor is a set of keys and values, very much like a 
set of predefined global values. Theoretically, I could use the scripting system 
to track my global values, instead of passing my entire global struct to my 
different routines and storing it in the parameter handle.

To make that change, I’d have to take out all my global variables and change 
to reading and storing my parameters in the scripting descriptor on every 
selector call. That’s a lot of work, and I didn’t feel I gained anything from 
that.

Instead, I decided to stay with my global routines, and use the scripting 
system to write out my final values and read in values to override my initial 
global values. This made much more sense, and allows the plug-ins to operate 
in a non-scripting environment, such as older versions of Photoshop.

5.1  WriteScriptParams routine

I created a routine, WriteScriptParams, that took the global values and 
created a descriptor to hand back to the host.

I created a new source file, DissolveWithScripting.c, to hold the 
playback and recording script functions.

OSErr WriteScriptParams (GPtr globals)
{

double percent = gPercent;

/* I’m using a double because I want to use scripting type UnitFloat with unitPercent, 
which is a double value. By using UnitFloat, my value will display in the actions palette 
with a percent sign after it. Cool! */
PIWriteDescriptor token = nil;
OSErr gotErr = noErr;

if (DescriptorAvailable())
{

/* DescriptorAvailable() is a macro from PIUtilities that checks to see if the 
gStuff–>descriptorParameters callback parameter block is available. */

token = OpenWriter();

// OpenWriter() is a macro from PIUtilities that creates a new write descriptor.

if (token)
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 9



{ // we got a valid token to work with. Write our keys:
PIPutUnitFloat(token, keyAmount, unitPercent, &percent);

/* this is a macro from PIUtilities. It requires the token to write to, the key, the 
unit (unitPercent, unitDistance, unitPixels, etc., defined in PIActions.h), and 
then a pointer to the double. */

PIPutEnum(token, keyDisposition, typeMood, gDisposition);

/* another macro from PIUtilities. This writes an enumeration. It takes the token, 
the key, the list of enumerations (the type) and the actual enumeration. 
gDisposition is an unsigned32 that is either dispositionClear, dispositionCool, 
dispositionHot, or dispositionSick. Note that if these weren’t defined in the 
terminology resource, it would display nothing, or garbage. The enum stored 
must match the keys in the enumeration list in the ‘aete’.*/

if (gIgnoreSelection)
PIPutBool(token, keyEntireImage, gIgnoreSelection);

/* Like I suggested, when you are writing boolean values, it makes the actions 
palette look cleaner if you only write them when they are in their non-default 
value. In this case, when gIgnoreSelection is true (the default is to use the 
selection) then the macro from PIUtilities writes the key and boolean value to 
the descriptor in token. */

gotErr = CloseWriter(&token);

/* This is a very useful routine defined in PIUtilities. When you close a token, it 
returns with a handle to a descriptor. This descriptor is then what you pass to the 
host for it to display in the actions palette (and subsequently return to you on 
playback.) CloseWriter closes the token and stores the descriptor in the 
gStuff–>descriptorParameters callback parameter block, which is how a plug-in 
hands back a descriptor. It then deallocates token and sets it to null. Lastly, it sets 
the recordInfo parameter to dialogOptional, which is the standard return value to 
tell the host “Only pop my dialog when the user wants it.” For a description of 
recordInfo, see the Scripting chapter of the SDK and PIUtilities.*/

} // close token
} // close DescriptorAvailable
return gotErr;

} // end WriteScriptParams

5.2  Calling WriteScriptParams

I call WriteScriptParams in DoFinish, as that’s the last routine the plug-in 
executes before it completely returns to the host.

5.3  Running the plug-in and errors in scripting

Once I completed my WriteScriptParams routine, it was time to try it out to 
see if the terminology resource, HasTerminology PiPL property, and 
WriteScriptParams routine worked. I did this by placing an alias to the 
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 10



plug-in in the Photoshop plug-ins directory, deleting my preferences file (to 
start fresh) and running Photoshop.

I then opened a document and clicked the “document” icon in the actions 
palette, which is the “New Action” button. I named it, then went to my plug-
in and executed it with some basic parameters. Finally, I clicked the “stop” 
button in the actions palette, and checked to see if my plug-in had been 
recorded.

Here is a list of issues and answers I found in debugging from this step:

5.3.1  My plug-in wasn’t in the filters menu.

This happened when I didn’t put the plug-in in the right directory, that 
Adobe Photoshop was loading plug-ins from the preferences file (and not 
scanning the directory to look for new plug-ins), or that my PiPL resource 
wasn’t valid.

5.3.2  My plug-in didn’t get recorded.

This was usually because I wasn’t handing back a proper descriptor. I was 
either handing back null, accidentally, or I was storing garbage data in the 
descriptor which was messing everything up.

5.3.3  The actions palette says my plug-in’s name, but none of its parameters 
(such as “Using: Dissolve” but nothing else)

This means scripting system did not find a valid 'aete' dictionary resource, 
and/or it did not find a valid reference to the resource in the HasTerminology 
property. It’s usually either a bad reference number in the HasTerminology 
property, a bad construction of the HasTerminology property, or a badly 

Figure 3: Creating a new action in the actions 
palette
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 11



formed dictionary resource. On the Macintosh side, the resource compiler will 
complain if the dictionary resource of Dissolve.r is not formed properly. On 
the Windows side, CNVTPIPL.EXE will complain. Unfortunately, neither will 
complain if the keys and data you hand back in your descriptor do not match 
the keys in your dictionary resource. It just won’t display.

5.3.4  The actions palette displays labels with no data after them, such as 
“Amount: %”

This was due to a messed up descriptor. I was either handing back invalid (or 
improper) data (such as mixing up my keys and data types) or I was handing 
back no descriptor (accidentally handing back null, for instance.)

5.3.5  The actions palette displays labels with scrambled data

This happened when I had different keys in my dictionary than I was storing 
in my descriptor. If I had a typeInteger for keyAmount but then stored 
using typeFloat, or if I was storing typeText and passed binary instead of 
alphanumeric information in the handle.

5.4  Actions palette with Dissolve action

Figure 4 shows the actions palette once I got the proper descriptor recorded, 
along with good dictionary and HasTerminology resources.

6.0  Automating the plug-in for playback

Now that the plug-in was correctly recording and displaying a descriptor, it 
was time to prepare it to read that descriptor when it was handed to me, and 
honor those parameters.

Figure 4: Dissolve filter actions palette display
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 12



Taking the same approach to globals as the WriteScriptParams routine, I 
created a ReadScriptParams routine, with the purpose of opening, pulling 
keys and values out of a descriptor, and overriding the global variables.

Boolean ReadScriptParams (GPtr globals)
{

double x = 0;
const double minValue = kPercentMin, maxValue = kPercentMax;

// used to pass minimum and maximum values for PinUnitFloat
unsigned long percentUnitPass = unitPercent;

// used to pass unitPercent to PinUnitFloat

PIReadDescriptor token = NULL;
DescriptorKeyID key = NULLID;
DescriptorTypeID type = NULLID;
int32 flags = 0;
DescriptorKeyIDArray array = { keyAmount, keyDisposition, NULLID };

/* this array will be checked off as each key is read. It should return { keyNull, keyNull, 
NULL }. If it doesn’t, then we’ve missed a key somewhere. See errMissingParameter, 
below. */

OSErr stickyError = noErr;
Boolean returnValue = true;

// ReadScriptParams returns with whether to pop the dialog or not (true = show dialog)

if (DescriptorAvailable())

{ // If descriptorParameters callback suite is available, do this:
token = OpenReader(array);

/* routine from PIUtilities. Opens the descriptor pointed to in 
gStuff–>descriptorParameters, starts tracking keys in array, and returns a read token 
to work with. */
if (token)

{ // got a valid read token. Now start grabbing keys until we get null:
while (PIGetKey(token, &key, &type, &flags))

{ // we got a valid (non-null) key. See which value it is:
switch (key)

{ // we can receive these keys in any order, so check to see which one:
case keyAmount:

PIGetPinUnitFloat(token, &minValue, &maxValue, 
&percentUnitPass, &x);

/* this is a routine from PIUtilities. It gets a unit-delimited value 
(such as unitPixels, unitPercent) and automatically pins it between 
minValue and maxValue. The value is returned in the last parameter, 
which is the address of a double (in this case, “x”). If the value had to 
be coerced (pinned to the low or high number) then this routine will 
return the coercedParam error, but “x” will still be a valid number. */
gPercent = x; // assign to our global
break;
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 13



case keyDisposition:
PIGetEnum(token, &gDisposition);

/* this is another routine from PIUtilities. It reads an enumerated 
value. Since our global is an unsigned32, we can have PIGetEnum 
store the value directly to the global. */
break;

case keyEntireImage:
PIGetBool(token, &gIgnoreSelection);

/* from PIUtilities, returns a boolean value. Since our global is a 
boolean, we pass its address and have it set directly. */
break;

// ignore all other cases and classes
}

}

stickyError = CloseReader(&token);

/* CloseReader, from PIUtilities, automatically closes the read token, deallocates 
it, and stores null in token. It returns an error code, indicating if any errors were 
encountered during the getKey routine.

if (stickyError)
{

if (stickyError == errMissingParameter)

; /* errMissingParameter = -1715, which means one of the keys in 
descriptorKeyIDArray was not found. Walk the array, and whatever is not 
“typeNull” is the value not found in the descriptor. For this example, I 
can go with the default values if I missed a key. If you cannot, or cannot 
coerce a value from the keys you did receive, then you might want to show 
your dialog. Whether or not you can show your dialog depends on 
PlayDialog(). See below. */

else

gResult = stickyError; // we got a real error. Report it.
} // close stickyError

} // close token
gQueryForParameters = returnValue = PlayDialog();

/* PlayDialog() examples playInfo inside gStuff–>descriptorParameters and returns 
true if it is plugInDialogDisplay, which means “please display your dialog.” If it is 
plugInDialogSilent, you must never show your dialog, and if it is 
plugInDialogDontDisplay, then don’t display your dialog unless you need to. (Such as 
if you missed a key you need and cannot coerce.) */

} // close descriptorAvailable
return returnValue; /* the global variable gQueryForParameters determines 
whether I need to pop my dialog, but I’ll return this value, as well. */

} // end ReadScriptParams
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 14



6.1  Calling ReadScriptParams and ValidateParameters

Calling ReadScriptParams is a little trickier. I want to call it after I’ve 
initialized my globals, but before I need them. Sometimes, however, my plug-
in may be called and I may never get to the DoParameters routine, which 
initializes my globals. This happens in Adobe Premiere, which only executes 
the plug-in completely once, then passes its parameters in for every frame of 
a filmstrip. This also can occur when a plug-in has been recorded, then the 
user quits Photoshop, runs it again, and executes the action right from the 
palette. Literally, I may go to store values in my globals before I’ve allocated 
space for them. Because of this danger, I decided to pull some of the 
initialization routines out of DoParameters and create an additional 
routine, ValidateParameters, which checks to see if the parameters are 
valid, and if not, initializes them. That way I can call it right at the beginning 
of my DoStart routine, right before I dispatch to my user interface and code 
which depends on my globals.

Anywhere before DoStart that I might use my globals, I need to check them 
for validity first. That could be in DoParameters, DoPrepare, or DoStart:

void DoParameters (GPtr globals)

{ /* Called on selectorParameters. We may not always get here on our first iteration (for 
instance, if a user created an action calling this plug-in, quit Photoshop, then ran Photoshop 
again and immediately executed the action. */

ValidateParameters (globals); // Check for valid parameters

gQueryForParameters = TRUE;

// If we're here, that means we're being called for the first time.
}

Now ValidateParameters does most of the work of DoParameters. This 
allows me to call it from multiple routines, to make sure my globals are valid 
and at least have default values before I use them:

void ValidateParameters (GPtr globals)

{ // Called whenever parameters need to be validated before used:
if (!gStuff->parameters)

{ // Oops. Parameters haven’t been allocated yet. Do that now.
gStuff->parameters = NewHandle ((long) sizeof (TParameters));

if (!gStuff->parameters)

{ // Couldn’t do it. Must be out of memory.
gResult = memFullErr;
return;

}

// Assign default global values:
gPercent = 50;
gDisposition = dispositionCool;
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 15



gIgnoreSelection = false;
gUseAdvance = false;
gRowSkip = 1;

} // close gStuff–>parameters
}

My DoPrepare routine does access some global variables, so I had to include 
a call to ValidateParameters before I used gRowSkip:

void DoPrepare (GPtr globals)

{ // Called on selectorPrepare to allocate memory requirements
short rowWidth = 0;
short total = 0;
long oneRow = 0;
long inOutRow = 0;
long inOutAndMask = 0;

gStuff->bufferSpace = 0;

// Check maxSpace to determine if we can process more than a row at a time

ValidateParameters (globals);

// check to make sure gRowSkip has been initialized BEFORE we use it!

total = gStuff->filterRect.bottom - gStuff->filterRect.top;
rowWidth = gStuff->filterRect.right - gStuff->filterRect.left;

oneRow = rowWidth * (gStuff->planes);

// one row of data and its planes

inOutRow = oneRow * 2; // inData, outData
inOutAndMask = inOutRow + rowWidth;

// maskData is only one plane (alpha)

while (((inOutAndMask * gRowSkip) < gStuff->maxSpace) &&
(gRowSkip < total))

gRowSkip++;

gStuff->maxSpace = gRowSkip * inOutAndMask; // all we need
}

Finally, right at the top of DoStart, I make a call to ValidateParameters to 
make sure, before I use my globals, that they’ve been at least assigned 
default values. Then I call ReadScriptParams to read the keys from the 
descriptor, if there is one, and override the default global values with the 
script parameters.

void DoStart (GPtr globals)

{ // Called from selectorStart. Main routine.
ValidateParameters (globals);

/* if stuff hasn't been initialized that we need, do it, then go check if we've got scripting 
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 16



commands to override our settings */

ReadScriptParams (globals);

// update our parameters with the scripting parameters, if available

if (gQueryForParameters)

{ /* We got either plugInDialogDisplay or this is the first time the user has selected the 
plug-in (so I have to pop the dialog to get the initial values) */

PromptUserForInput (globals); // Show the UI
gQueryForParameters = FALSE;

}

// Rest of DoStart here.

6.2  Playback and recording questions: How do I know when...?

The obvious questions I had were:
“How do I know when I’m being played back?”
“When I’m being recorded?”
“When the user has selected me from the menu?”
“When the user has selected me in the actions palette?”

The answer to all of these is “You don’t.”

A plug-in has no way of knowing whether it’s being recorded, played back, or 
directly interacted with by the user. This decision was made in the scripting 
implementation to make it as seamless with the original interface as possible. 
As long as you honor the playInfo flag, you will always know whether to 
pop your dialog or not. This includes if the user has clicked the Dialog On icon 
in the actions palette and is playing back your plug-in, or the user has 
selected your plug-in directly from the menu.

Whether the dialog has been requested or not, it makes sense to override any 
globals with any scripting keys provided before deciding to display the dialog 

Figure 5: Toggle dialog option in actions 
palette
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 17



-- that way, the user can double-click to re-record an action and your plug-in 
will pop its dialog with the scripting parameters handed to it. Don’t make the 
mistake (like I did, originally) of ignoring the scripting parameters just 
because plugInDialogDisplay has been requested. If it has been requested 
from within an action, like Figure 5, the user will expect to see the 
parameters from the actions palette in the plug-in’s dialog.

Now that we’re deep in the pool of scripting and you’ve gone through the 
simple example of the Dissolve filter plug-in, lets step up the complexity and 
look at an Import Module. In my case, it was the DummyScan example from 
the 3.0.5 SDK, which I renamed GradientImport, which was more in sync with 
what it did.

7.0  GradientImport import plug-in module

So you thought the Dissolve example was torture enough? Oh no, things get 
much more fun when you try to apply scripting to a module that can be 
controlled in a batch. Batch importing is an additional method for loading 
numerous images at a time. This is in addition to the old multiple acquire 
mechanism that is part of the import module interface.

The batch command is available from the pull-down menu attached to the 
actions palette.

Figure 6: Batch dialog
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 18



With so many options, there are several approaches to updating an Import 
module:

1. Leave it alone. The scripting system will automatically call the import 
module for each import in a batch. Even vanilla plug-ins can be called 
by the scripting system. Your dialog will be popped for every iteration, 
which may not be desireable.

2. If it is a single import module, meaning it only returns one image at a 
time, you can update it for scripting and record all the parameters 
necessary for that single import. The batch mechanism will pass your 
parameters to your plug-in automatically.

3. If it is a multiple acquire module, that means that all control for 
opening multiple images happens within your plug-in. You can: a) 
maintain detailed control over the iterative imports and use the 
scripting system to call your plug-in with some default parameters, 
such as preferences, and/or b) record every iterative import as another 
scripting event.

The GradientImport module uses the older multiple acquire mechanism. To 
showcase the most robust scripting setup, I chose the last option, 3b, and 
decided to make the plug-in record every event of its multiple acquire. That 
way a user can blast off a single action and have multiple images open. This 
makes the most sense for digital cameras that cache a set of images and let 
the user import and color correct multiple images.
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 19



7.1  Creating the GradientImport terminology resource

7.1.1  Assessing the user interface

The first thing I did was examine the user interface dialog to determine what 
parameters to represent in the terminology resource.

The items were:

1. An “OK” button (“Import”) which does not need to be recordable.

2. A “Cancel” button (“Done”) which does not need to be recordable.

3. An integer from 1 to 30,000 representing Rows

4. An integer from 1 to 30,000 representing Columns

5. A mutually-exclusive enumeration, “Mode”, representing “Bitmap”, 
“Grayscale”, “Indexed Color”, or “RGB Color”.

6. A boolean, “Invert”

Below is the terminology resource I used for GradientImport.

7.1.2  GradientImport terminology resource

resource 'aete' (ResourceID, purgeable)

Figure 7: GradientImport user interface
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 20



{ // aete version and language specifiers:
1, 0, english, roman,

{ // vendor suite name:
vendorName, // “AdobeSDK”'
"Adobe example plug-ins", // optional description
ourSuiteID, // suite id ‘sdK3’
1, // suite code, must be 1
1, // suite level, must be 1
{}, // structure for filters
{ // structure for all other plug-in types:

vendorName " GradientImport", // “AdobeSDK GradientImport”
"gradientImport multiple import",// optional description
{ // properties:

"<Inheritance>",

/* all non-filters inherit from a base class of the same name as their plug-in 
type, such as classFormat, classExport, etc. See PIActions.h. Inheritance must 
be the first property entry, even if there are no others. */
keyInherits, // always
classImport, // classExport, classFormat, etc.
"parent class import", // optional description
flagsSingleProperty, // parameter flags

// Second property:
"multi-import", // property name
keyMultiImportInfo, // unique key ‘mulK’
classMultiImportStruct, // unique class ‘mulS’
"multiple import info", // optional description
flagsListProperty // flags for a list

}, // close properties
{}, // elements (not supported)
/* Normally you won’t need to create other classes, but since I’m going to be 
storing a list of “import information” (the values needed to create one image), 
I’m creating a class with the set of information, called “import info”: */
"import info", // unique class name
classMultiImportStruct, // unique class ‘mulS’
"class import info", // optional description
{ // import info class properties:

"rows", // property name
keyRows, // standard key keyHorizontal
typeFloat, // property type
"number of rows", // optional description
flagsSingleProperty, // flags for property

"columns", // property name
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 21



keyColumns, // standard key keyVertical
typeFloat, // property type
"number of columns", // optional description
flagsSingleProperty, // flags for property

"mode", // property name
keyOurMode, // standard key keyMode‘
typeGradientMode, // unique type ‘grmT’
"color mode", // optional description
flagsEnumeratedProperty, // flags for property

"invert", // property name
keyInvert, // unique key ‘invR’
typeBoolean, // property type
"invert image", // optional description
flagsSingleProperty // flags for property

} // close class import info
{}, // elements (not supported)

} // close non-filter classes
{}, // comparison operators (not supported)
{ // Any enumerations go here. We have one, typeGradientMode:

typeGradientMode, // unique type ‘grmT’
{ // enumeration listing:

"bitmap", // property name
ourBitmapMode, // unique key ‘bitM’
"bitmap mode", // optional description

"grayscale", // property name
ourGrayscaleMode, // unique key ‘gryS’
"grayscale mode", // optional description

"indexed color", // property name
ourIndexedColorMode, // unique key ‘indX’
"indexed color mode", // optional description

"rgb color", // property name
ourRGBColorMode, // unique key ‘rgbC’
"rgb colormode", // optional description

}, // close typeGradientMode
} // close enumerations

} // close vendor suite
}; // close ‘aete’

After the terminology resource was done, I added the HasTerminology to the 
PiPL.
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 22



7.1.3  GradientImport HasTerminology PiPL property

HasTerminology { ourClassID, ourEventID, ResourceID, uniqueString }

With:

#define vendorName "AdobeSDK" // unique vendor name
#define ourSuiteID 'sdK3' // must follow id guidelines
#define ourClassID 'graD' // must be unique, but can be suite id
#define ourEventID typeNull

/* must be typeNull or the host will think it’s a filter (event) instead of an import, export, 
format, or selection (class) */
#define ResourceID 16000 // typical id for plug-ins
#define uniqueString "" // empty

7.2  Writing scripting parameters in GradientImport

The next step was to create the routine to pass the scripting parameters back 
out to Photoshop. Taking the same approach as with the Dissolve example, I 
used my globals to pass their values across my different functions, then, at 
the last minute, I pass the list of events back encapsulated in a descriptor.

Due to the nature of the multiple acquire mechanism, I needed a way to 
track the multiple imports that would occur and then hand them back to the 
scripting system. I decided to do this by creating an actual descriptor for each 
import, then storing all the descriptors inside an encapsulating descriptor to 
hand back to the host at the very end of execution. This took the form of:

1. In DoFinish, create a descriptor and store it in a static array with a 
maximum of kMaxDescriptors (in this case, 50) via 
CreateDescriptor().

2. In DoFinish, if multiple acquiring was not available, write the 
descriptor out to the host in final form via 
CheckAndWriteScriptParams().

3. In DoFinalize, write the descriptor out to the host in final form via 
CheckAndWriteScriptParams().
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 23



So, DoFinish looked like this:

void DoFinish (GPtr globals)
{

gStuff->acquireAgain = gContinueImport;

// gContinueImport tracks whether to continue importing

// Now create a descriptor and store it in our static array for saving later:
CreateDescriptor(globals); // creates and stores descriptor in next open gArray

// If we can’t finalize, then we’ll have to write our parameters now:
if (!gStuff->canFinalize)

CheckAndWriteScriptParams(globals); // writes script params
}

And DoFinalize:

void DoFinalize (GPtr globals)
{

gQueryForParameters = false; // reset global
CloseOurDialog (globals); // closes our UI

// We’re done. Write final parameters:
CheckAndWriteScriptParams(globals); // writes script params

}

I created a source file, GradientImportScripting.c, where I put all the 
scripting routines.

void CreateDescriptor (GPtr globals)
{

PIType mode = GetGradientMode(gLastMode);

// converts a global enumeration to the actual unsigned32 mode

const double rows = gLastRows, columns = gLastCols;

// converting globals to doubles for PutUnitFloat to use unitPixels value

Boolean invert = gLastInvert;
PIWriteDescriptor token = NULL;
PIDescriptorHandle h;
OSErr stickyError = noErr;

if (DescriptorAvailable())

{ // PIUtilities routine to check for descriptorParameters callbacks succeeded.
token = OpenWriter(); // open new write descriptor
if (token)

{ // got the descriptor. Go ahead and write the keys into it:
PIPutUnitFloat(token, keyRows, unitPixels, &rows);

// puts our rows as pixels
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 24



PIPutUnitFloat(token, keyColumns, unitPixels, &columns);

// puts our columns as pixels

PIPutEnum(token, keyOurMode, typeGradientMode, mode);

// puts the exact enumeration (must match terminology resource!)

if (invert) PIPutBool(token, keyInvert, invert);

// again, only if non-default (true), writes “with invert”

stickyError = CloseWriteDesc(token, &h);

/* have to call PIUtilities CloseWriteDesc, which closes a specific token, and 
returns a descriptor handle in “h”. If I called CloseWriter, it would close it and 
automatically store it in gStuff–>descriptorParameters, which I don’t want, since 
I’m trying to create a static array of descriptors before passing them to the host. */
token = NULL; // just in case

if (!stickyError)

{ // as long as we didn’t have an error writing:
if (gLastImages >= kMaxDescriptors)

{ // oops, went over our limit. Delete the last and replace it:
gLastImages--; // just keep replacing last one
PIDisposeHandle(gArray[gLastImages]);

// dispose last handle
}

gArray [gLastImages++] = h; // stick handle on array

gArray [gLastImages] = h = NULL; // null out end, just in case}
} // close stickyError

} // close token
} // close descriptorAvailable

} // end createDescriptor

The CheckAndWriteScriptParams routine checks for any data then calls the 
WriteScriptParams routine:

OSErr CheckAndWriteScriptParams (GPtr globals)
{

OSErr gotErr = noErr;

if (gLastImages) gotErr = WriteScriptParams(globals);

// if we have done at least one import (gLastImages > 0), write our scripting parameters
else gotErr = gResult = userCanceledErr;

/* else error out of entire loop (if we don’t do this, we might end up with a single recorded 
parameter, “Import using: GradientImport” which looks ugly. */
return gotErr;

}

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 25



OSErr WriteScriptParams (GPtr globals)
{

unsigned32 count = gLastImages;
PIWriteDescriptor token = NULL;
OSErr stickyError = noErr;

if (DescriptorAvailable())

{ // gStuff–>descriptorParameters callbacks available.
token = OpenWriter(); // open write descriptor
if (token)

{ // got our token. Write our keys.
PIPutCount(token, keyMultiImportCount, count);

/* A list is always preceded by its count. Note the count, and the following keys, 
are stored as keyMultiImportCount for the entire list. */

for (count = 0; count < gLastImages; count++)

{ // iterate through local array:
PIPutObj(token, keyMultiImportInfo, 
classMultiImportStruct, &gArray [count]);

/* PIPutObj, from PIUtilities, automatically disposes the handle and sets it to 
null. */

}

gLastImages = 0; // reset
stickyError = CloseWriter(&token);

/* closes descriptor, stores it in gStuff–>descriptorParameters, sets 
plugInDialogOptional, and sets token to null. */

} // close token
} // close descriptorAvailable
return stickyError;

} // end WriteScriptParams

7.3  Testing the multiple import routine

Now that the write routines are done, I was able to test the multiple import 
routines. I turned recording on in the actions palette and imported a couple 
of images, one after the other, then dismissed the GradientImport dialog. 
Figure 8 shows the resulting display in the actions palette.
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 26



Note how the multiple import list is presented: as its label, “Multi-import”, 
with its type label, “import info” and “list” after it. Then each individual item 
of the list is headed with the type label “import info”. The first image is a 
256x257 RGB image; the second image is a 100x101 grayscale inverted image. 
Again, I only display a boolean when its in its non-default (“with invert” only, 
as opposed to “without invert” and “with invert”). Another nice feature is 
the display of the word “pixels” after the “Rows” and “Columns” entries. 
This is thanks to PutUnitFloat and unitPixels.

7.4  Playback of scripting parameters for GradientImport

Now that I had GradientImport correctly recording parameters, it was time to 
modify it to read back parameters. This, too, is complicated, because it 
requires reading from a list and dispatch parameters through the multiple 
acquire loop, iterating through the list. I decided to break it out into this 
logic:

1. At DoPrepare, open any descriptor handed to me by the host and see 
if there was a list in there, via OpenScriptParams.

2. At DoStart, read the next descriptor object in the list via 
ReadScriptParams and assign all its keys to globals via 
SwitchScriptInfo

Figure 8: GradientImport display in the actions palette
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 27



3. In DoStart, as soon as the dialog is asked for, or if there is an error, we 
no longer need to iterate through the list. Close it via 
CloseScriptParams and continue to create our own array to pass 
back later.

void DoPrepare (GPtr globals)
{

gStuff->maxData = 0;

if (!WarnBufferProcsAvailable ())

gResult = userCanceledErr; // exit. Already displayed alert.

// if finalization is available, we will want it:
gStuff->wantFinalize = true;

ValidateParameters (globals);

/* this should look familiar. Same functionality, but instead, checks variables pertinent to 
GradientImport for default values and allocation, if needed. */

// now see if the scripting system has passed us anything:
OpenScriptParams (globals);

}

void DoStart (GPtr globals)
{

int16 j = 0;

// Insist on having the buffer procs:
if (!WarnBufferProcsAvailable ())
{

gResult = userCanceledErr; // should probably display err
return;

}

// Assume we won’t be coming back around for another pass unless explicitly set:
gStuff->acquireAgain = gContinueImport = false;

// Validate our globals then override them with scripting parameters, if available:
ValidateParameters (globals);
ReadScriptParams (globals);

if (gQueryForParameters)

{ // open our dialog. If it’s already up, this returns with no err:
if (!OpenOurDialog (globals))

{ // Couldn’t open our dialog. Abort! Abort!
gQueryForParameters = false;

CloseScriptParams(globals); // Close up the open descriptor!
gResult = memFullErr; // return with memory full error
return;

}

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 28



// So far so good. Now dispatch our dialog routines:
if (!RunOurDialog (globals))

{ // User canceled. Close everything up.
gQueryForParameters = false;

CloseOurDialog (globals); // deallocates dialog
CloseScriptParams(globals); // closes open descriptor
gResult = userCanceledErr; // exit without err
return;

// rest of DoStart here.

With DoPrepare and DoStart set up, there were four routines to be created. 
OpenScriptParams, to open the descriptor; ReadScriptParams, to read the 
next object in our list; SwitchScriptInfo, which reads keys from the object 
and overrides the global values, and CloseScriptParams, to close and tidy 
up the open descriptor handed to the plug-in from Photoshop.

OpenScriptParams was one of the easier ones, as all it had to do was watch 
for the count key and find it in the descriptor handed in by the host:

void OpenScriptParams (GPtr globals)
{

DescriptorKeyID key = 0;
DescriptorTypeID type = 0;
int16 loop = 0;
int32 flags = 0;
Boolean leaveEarly = false;

if (DescriptorAvailable())

{ // descriptor procs available. Now open the descriptor:
gToken = OpenReader(NULL);

/* Normally would pass an array indicating the expected keys. Problem is I don’t 
know how many items are in the list until I open it. Therefore, I’m passing NULL to 
indicate to the scripting system not to bother with a key array list. */
if (gToken)

{ /* since we’ll be reading from this descriptor in numerous routines, I store the 
token in a global variable. */

while (!leaveEarly)

{ // Until we find our key or run out of keys in the descriptor, we’ll look for it:
leaveEarly = PIGetKey(gToken, &key, &type, &flags);
switch (key)

{ // Only interested in one case, keyMultiImportCount:
case keyMultiImportCount:

PIGetCount(gToken, &(gCount));
leaveEarly = true;
break;

/* I’m ignoring all other keys. All I’m looking for is the list, which will be 
preceded by a count key. Once I find that, I drop out, eventually to be 
called by the read routine. */

} // close switch
} // close leaveEarly
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 29



} // close gToken
gQueryForParameters = PlayDialog();

// if true, show the dialog

} // close descriptorAvailable
} // end OpenScriptParams

The ReadScriptParams routine needs to take up where the 
OpenScriptParams routine left off: There is an open descriptor, gToken, 
and it is sitting on an object which is another descriptor. I need to take that 
descriptor, open it, parse all its keys, and override my globals. That happens in 
SwitchScriptInfo.

void ReadScriptParams (GPtr globals)
{

int16 loop = 0;
int32 flags = 0;
DescriptorTypeID type = 0;
DescriptorKeyID key = 0;
PIDescriptorHandle subHandle = NULL;
PIReadDescriptor subToken = NULL;
OSErr stickyError = noErr;

DescriptorTypeID passType = classMultiImportStruct;

// GetObj needs to know what class type to expect

DescriptorKeyIDArray subKeyIDArray =
{ keyRows, keyColumns, keyOurMode, NULLID };

/* These are all expected. If keyInvert is there, it’s handled, just not checked off the list. If I 
put it in the list, then the list will generally always return with an error, saying it didn’t 
get keyInvert. I’d rather have it be a pleasant addition then always expecting it and rarely 
getting it. */

if (DescriptorAvailable())

{ // Have descriptor procs.
if (gToken)

{ // global token is valid
if (gCount > 0)

{ // have another item waiting
gLastInvert = false;

/* default is no invert. If we get the key, we’ll override the default. Otherwise, 
we set it here, just in case we have an error below and don’t get a chance to set 
it one way or the other. */

PIGetObj(gToken, &passType, &subHandle);

/* From PIUtilities, reads an object from descriptor gToken into subHandle of 
type passType */

subToken = OpenReadDesc(subHandle, subKeyIDArray);

/* Can’t use OpenReader() because that automatically uses the descriptor 
passed in gStuff–>descriptorParameters. Instead, we use a subroutine, 
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 30



OpenReadDesc, which opens handle subHandle and tracks array 
subKeyIDArray, returning its descriptor token. */
if (subToken)

{ // was able to open descriptor.
SwitchScriptInfo (globals, subToken);

// reads the keys from descriptor subToken and overrides globals

stickyError = CloseReadDesc(subToken); // done
subToken = NULL; // just in case
PIDisposeHandle(subHandle); // dispose handle
subHandle = NULL; // just in case

if (stickyError)

{ // error occurred while reading keys
if (stickyError == errMissingParameter)

; /* -1715 missing parameter. Walk keyIDArray to find which 
one. */

else

gResult = stickyError; // real error occurred
}

gContinueImport = true; // we got something, so keep going!
} // close subToken
gCount--; // one less in list

} // close count
if (gCount < 1)

CloseScriptParams(globals); // that was the last one! Close it up!
} // close readToken

} // close descriptorAvailable
} // end ReadScriptParams

The SwitchScriptInfo routine reads keys out of the descriptor, overriding 
their global values:

void SwitchScriptInfo (GPtr globals, PIReadDescriptor token)
{

DescriptorKeyID key = 0;
DescriptorTypeID type = 0;
int16 loop = 0;
int32 flags = 0;
int32 count = 0;

double rows = kRowsMin, columns = kColumnsMin;

// default value for rows and columns
PIType mode = ourRGBColorMode;

// default value for mode is RGB
Boolean invert = false;

// default for invert is false
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 31



const double minRows = kRowsMin, maxRows = kRowsMax,
minColumns = kColumnsMin,
maxColumns = kColumnsMax;

/* PinUnitFloat will pin a value between minimum and maximum bounds, but, since 
those values are passed as addresses, I assign these locals to the constant values */

unsigned long pixelsUnitPass = unitPixels;

// have to pass address of unsigned long for unitPixels, so assign local to constant

while (PIGetKey(token, &key, &type, &flags))

{ // continue while there are more keys
switch (key)
{

case keyRows:
PIGetPinUnitFloat(token, &minRows, &maxRows, 
&pixelsUnitPass, &rows);

/* pins the value between min and max, returnning it in “rows”. It will return 
coercedParam if it had to coerce the value to between min and max */
gLastRows = rows; // assign local double to global short
break;

case keyColumns:
PIGetPinUnitFloat(token, &minColumns, &maxColumns, 
&pixelsUnitPass, &columns);

// pins columns between min and max
gLastCols = columns; // assign local double to global short
break;

case keyOurMode:
PIGetEnum(token, &mode);

// returns an enum -- must be the same as terminology enum list
gLastMode = GetPlugInMode(mode);

// maps enum to ordinal
break;

case keyInvert:

PIGetBool(token, &invert); // returns boolean
gLastInvert = invert; // assigns boolean to global
break;

} // close switch
} // close getkey

} // end SwitchScriptInfo

CloseScriptParams is called from multiple places whenever there is an 
error or the list is finished and the descriptor passed to the plug-in by 
Photoshop should be closed. Note that the descriptor passed by the host is a 
handle, and is the plug-in’s responsibility to deallocate. If I didn’t call this 
routine, we’d have a memory leak, unless I passed the exact same descriptor 
back to the host. But I don’t pass the same descriptor back, because, even 
while this open descriptor is being read and used to do multiple imports, etc., 
the CreateDescriptor, etc., routines are creating descriptors to pass back 
to the host in WriteScriptParams. Ergo, since I’m putting my own 
descriptor in gStuff–>descriptorParameters, I have to call 
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 32



CloseScriptParams, at least once, to make sure that the host descriptor is 
disposed.

void CloseScriptParams (GPtr globals)
{

OSErr stickyError = noErr;

if (DescriptorAvailable())

{ // descriptor procs available
if (gToken)

{ // have our global token
stickyError = CloseReader(&gToken);

// closes token, deallocates memory, and sets it to null

if (stickyError)

{ // oops, got an error
if (stickyError == errMissingParameter)

; // -1715 missing parameter. Sort of late, by now.
else

gResult = stickyError; // real error occurred
}

} // close token
} // close descriptorAvailable
gCount = 0; // reset global list count
gContinueImport = false; // finish importing and exit

} // end CloseScriptParams

7.5  Playing back GradientImport

Now that the playback functions have been completed, the last task was to 
record some actions and play them back to make sure the parameters were 
honored. It’s pretty cool to create a single action that contains multiple 
imports inside of it, and you can see how the actions palette can get pretty 
full.

8.0  Other issues and future implementation

8.1  Opaque data

You can see that the actions palette can fill up pretty fast with large multiple 
imports. Opaque data is the term for information that you don’t want 
displayed in the actions palette. This is sometimes useful because the data is 
serial or registration information, it’s complex, cannot be represented to the 
user given the current interface (the actions palette), or simply looks yucky.
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 33



In PIActions.h there is a key, “keyDatum” (I couldn’t use keyData, it was 
taken) that displays in the actions palette as:

Data: “...”

Which is an opaque display. keyDatum (and other opaque keys) must be 
stored as textual data. That means that if you want to store an array of 
hexadecimal values, for instance, you must convert them to their textual 
representation. To store:

$01 $02 $03 $04 $05

You must store it as:

“0102030405”

Or some such similar representation. The reason for this, and the reason 
there are no opaque keys that simply do not display at all in the actions 
palette, stems from the user interface issues of the AppleScript and 
AppleEvent automation architecture. Without getting into too much detail, 
it has to do with the fact that the user side of the architecture is made so that 
a user may pass any English-like string into the automation system to be 
parsed, such as:

tell application “Photoshop” to do Gaussian Blur with radius 2.0

Opaque data breaks this mold, but not completely, because opaque data, by 
its definition, has no English equivalent. (Otherwise, you would just display it 
in the actions palette like any other parameter.) Because strings and 
sentences can be passed as automation and event requests, even the opaque 
data must be able to be typed and passed as a simple sentence. So, by this 
example, the user could pass the event:

tell application “Adobe Photoshop 4.0” to do GradientImport with data 
“0102030405”

There is more detail on this in the AppleScript and AppleEvent Inside 
Macintosh books, and references to them in the Photoshop SDK Guide.

8.2  External scripting

Scripts can be controlled via OLE on Windows and AppleScript on Macintosh. 
Documentation on triggering scripts externally is in the Photoshop SDK Guide 
in the Scripting chapter and in Appendix B: OLE Automation.
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 34



8.3  Saving filenames

What isn’t covered in the scope of this article, but is an interesting scripting 
question, is what to do with filenames when saving them as scripting keys. I 
recommend looking at the example Format Module in the SDK for an 
example of this. The basic logic used by Photoshop for converting the 
filename dialog into a scripting parameter, and, therefore, the logic I 
recommend you use is:

1. If the user types a new name, save that entire path.

2. If the user leaves the default name, save the path to the folder, but 
append the current filename to the path when saving.

More detail about this is can be found in the SDK guide and the Format 
example.

8.4  Future features

Photoshop 4.0 scripting is available to all plug-in module types, and, as 
stated, it can control non-scripting aware plug-ins by executing them as if a 
user had selected them.

We recommend that you update your plug-in to be Photoshop 4.0 scripting-
aware. Because execute-only plug-ins pop their user interface every time 
they’re called from an action, a user running a batch on a folder of hundreds 
of files is going to have a much more positive experience, and therefore 
prefer, working with plug-ins that have been made scripting-aware.

I recommend playing with the batch control mechanism to get a good 
understanding of how it interacts with the user, and also to look at how Save 
and Open dialogs are handled, as far as scripting is concerned.

Next issue I’ll take a look at some of the new plug-in types introduced in 
Photoshop 4.0 and all the new API features related to those, including color 
picker plug-ins and the new selection modules.

###
Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 35


	1.0 Abstract 1.0 Making a plug-in scripting-aware ...
	2.0 Introduction 2.0 Welcome to Adobe Photoshop 4....
	2.1 Converting 3.0.5 to 4.0
	2.2 Scope of this article
	2.2.1 More detail is in the SDK
	2.2.2 Macintosh or Windows?


	3.0 Starting out
	3.1 Basic scripting approach

	4.0 Creating a terminology resource
	4.1 AppleScript/AppleEvents
	4.2 Start with the examples
	4.3 Add the HasTerminology resource to your PiPL

	5.0 Creating a scripting recording function
	5.0.1 To use globals or not to use globals, that i...
	5.1 WriteScriptParams routine
	5.2 Calling WriteScriptParams
	5.3 Running the plug-in and errors in scripting
	5.3.1 My plug-in wasn’t in the filters menu.
	5.3.2 My plug-in didn’t get recorded.
	5.3.3 The actions palette says my plug-in’s name, ...
	5.3.4 The actions palette displays labels with no ...
	5.3.5 The actions palette displays labels with scr...

	5.4 Actions palette with Dissolve action

	6.0 Automating the plug-in for playback
	6.1 Calling ReadScriptParams and ValidateParameter...
	6.2 Playback and recording questions: How do I kno...

	7.0 GradientImport import plug-in module
	7.1 Creating the GradientImport terminology resour...
	7.1.1 Assessing the user interface
	7.1.2 GradientImport terminology resource
	7.1.3 GradientImport HasTerminology PiPL property

	7.2 Writing scripting parameters in GradientImport...
	7.3 Testing the multiple import routine
	7.4 Playback of scripting parameters for GradientI...
	7.5 Playing back GradientImport

	8.0 Other issues and future implementation
	8.1 Opaque data
	8.2 External scripting
	8.3 Saving filenames
	8.4 Future features


