Adobe Technical Journal

Making a plug-in scripting-aware for Photoshop 4.0
Rev. 2

Andrew Coven
Photoshop Developer Support Engineer
Adobe Systems, Incorporated

gapdevsup@adobe.com

1.0 Abstract
Making a plug-in scripting-aware for Adobe Photoshop 4.0

The Adobe® Photoshop® 4.0 application programming interface introduces a
new feature for automation: actions. Controlled by the user via the actions
palette, plug-ins can execute pre-defined commands and batches to allow the
user to automate routine and difficult tasks from a single button-click. This
article details the process used to update two Adobe Photoshop 3.0.5 plug-
ins, Dissolve and DummyScan (which was renamed GradientImport), to make
them scripting-aware and controllable via the actions palette.

2.0 Introduction
Welcome to Adobe Photoshop 4.0 Actions

The Adobe® Photoshop® 4.0 application programming interface (API)
extends the 3.0.5 specification to include a number of new items. One that
affects all the plug-in types and specifications is the new automation system.
The main user interface for the automation system is the actions palette. The
actions palette allows the user to specify commands and plug-ins that are
scripting-aware and record multiple events into actions that can be executed
with a single mouse-click.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 1

e e e

| Actions »

i [* RGE to Indexed Color it

« [} Feduce Graininess

< | [|IF Drop Shadow {full image)

L i [wignette ¢full image

L i b Image Size

[Revert E
[(m (e [CH[&[&

Figure 1: Actions palette

A folder or group of files can also be controlled so that actions can be applied
in a batch. This is called batch-processing and is part of the Adobe Photoshop
4.0 actions palette.

All plug-ins can be controlled by the scripting system as execute-only
commands. This means, whether the plug-in is scripting-aware or not, the
action system can execute the plug-in as if the user had invoked it from its
menu.

A scripting-aware plug-in, however, goes further, and allows the action
system to control your plug-in's parameters automatically. This means that,
unless there is an error or a parameter that your plug-in needs that it didn‘t
get, your plug-in can operate silently, not needing to show its user interface
and interact with the user. This is extremely valuable for batch-processing and
generating special effects that require numerous commands and parameters.

2.1 Converting 3.0.5 t0 4.0

My task was to take the existing plug-ins that shipped with the 3.0.5 software
development kit (SDK) and convert them all to the 4.0 API spec. This proved
to be fairly straight-forward for some plug-in types, such as simple filters, and
more involved for others, such as Import modules, especially with ones that
do multiple imports.

This article will detail how | converted two plug-ins, the Filter plug-in module
Dissolve and the Import plug-in module, GradientImport, to be scripting-
aware.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 2

The filter plug-in was vastly simpler, so I'll start with that, and then detail the
process for Gradientimport, which required additional code to handle the
multiple import routines.

2.2 Scope of this article

2.2.1 More detail is in the SDK

Intimate details on all the scripting parameters and callback suites are

available in the Adobe® Photoshop® 4.0 SDK, which is available at Adobe’s
web site:

http://ww. adobe. com support servi ce/ devrel ati ons/ sdks. htm

This article will only address the callbacks and structures that were pertinent
to updating the two plug-in example modules. There is much more to the
scripting system than is covered in this document. | recommend you read the
SDK for more detail.

2.2.2 Macintosh or Windows?

Scripting implementation, recording, and playback are all part of the Adobe
Photoshop API. This means that, except in a few rare exceptions, the
callbacks, data structures, and parameters are all exactly the same on both
Macintosh and Windows. This article shows Macintosh user interface
examples, but the discussion and examples are comparable, if not exactly the
same, on Windows.

3.0 Starting out

3.1 Basic scripting approach

The approach to creating a scripting-aware plug-in is detailed in the scripting
chapter of the Photoshop SDK programmer’s guide:

1. Look at your user interfaces and describe the parameters as human-
readable text;

2. Create a terminology resource for your plug-in and your PiPL
HasTerminology property;

3. Update your plug-in code to record scripting events and objects;

4. Update your plug-in code to be automated by (playback) scripting
events and objects.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 3

With this in mind, | looked at the user interface for the Dissolve filter. This
was the same both on Macintosh and Windows. The Macintosh interface is
shown in Figure 2.

Dissolve-with-Applescript

5 Amount %: |50
?éﬁ-ﬁ* Disposition:) Clear

i Cool

{3 Hot
[] Entire image) Sick

Figure 2: Dissolve filter user interface

After looking at my interface, | was able to describe it as these elements:

1.

2.

A button, “OK", which | don't need to be recordable.
A button, “Cancel”, which | don't need to be recordable.

An amount, expressed as an integer from 1 to 100 representing a
percentage.

A disposition, expressed as a textual enumeration of a mutually-
exclusive list of options, either “Clear”, “Cool”, “Hot", or “Sick".

A flag for “entire image”, expressed as a boolean value of either yes or
no.

This should look familiar. It is reminiscent of the resource text used to
describe Macintosh dialog items.

When describing these items, it's important to keep in mind how they will
look when represented in the actions palette. Since the actions palette does
get loaded with text, it makes sense to use single labels whenever possible
and where it will be more readable to the user. | could have used four
booleans for “Clear”, “Cool”, “Hot", and “Sick”, but since “Disposition”
should always only be one thing, it makes more sense to have the actions
palette display:

Dissolve
Amount: 20%
Disposition: Cool

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997

Than something like:

Dissolve
Amount: 20%
without Clear
with Cool
without Hot
without Sick

And speaking of booleans, it's usually much better form to always leave the
default value of a boolean as implied instead of explicitly showing it in the
actions palette. Again, because the palette can get pretty large, it's better to
only store boolean values that are different than your default. For instance,
in the example above, “Entire Image” isn't listed in the palette because it was
in its default (off) state. If it is checked, then | would store it in the action
descriptor and it would get displayed as:

Dissolve

Amount: 20%
Disposition: Cool
with Entire Image

4.0 Creating a terminology resource

4.1 AppleScript/AppleEvents

AppleScript and AppleEvents are the Macintosh’s automation system. The
Photoshop 4.0 scripting system is based heavily on the programming
architecture defined by Apple. Most users think of AppleScript and
AppleEvents from the user perspective: the Macintosh script editor, firing off
events to different applications to automate procedures. What I'll be
describing here is the internal workings necessary to define events to an
external system. In this case, the plug-ins, such as Dissolve, must take on extra
descriptors that make their parameter’s available to the host, in this case,
Adobe Photoshop 4.0. The terminology resource is the first internal
description system that bridges the gap between the plug-ins programming
parameters and the external automation system.

And, as stated, the Photoshop 4.0 automation system, while designed around
the AppleScript/AppleEvent model, has been created to integrate fully with
OLE Automation on Windows. More information on that is available in the
appendix of the Photoshop SDK Guide.

4.2 Start with the examples

The terminology resource is a standard AppleScript/AppleEvent 'aet e'
resource. The terminology resource is a bit cumbersome, so | always

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 5

recommend starting with the example code. In this case, | had to make it
from scratch. First, | chose to define some common parameters that would
change from plug-in to plug-in:

#defi ne
#defi ne
#def i ne
#defi ne
#defi ne
#def i ne

Then, | created the terminology resource:

resource 'aete'

vendor Nane
our Suitel D
ourC assl D
our Event I D
Resourcel D

" Adobe SDK"
' sdK1'
ourSuitel D
"di sS'
16000

uni queString ""

(Resourcel D, purgeabl e)

{ // aete version and language specifiers:

1, 0, english,

{ //vendor suite name:
vendor Narre,
"Adobe exanpl e plug-ins",
our Sui t el D,
/* This is extremely important. All IDs, keys, and names must be unique. The SDK
describes a naming convention that must be followed explicitly. Your scripting keys
and IDs (unsigned32) must always follow these rules:

1. They must start with a lowercase letter.

roman,

// unique vendor name

// must follow id guidelines

// must be unique, but can be suite id
// must follow id guidelines

// typical id for plug-ins

// empty

// “AdobeSDK™'
// optional description
// suite id ‘sdK1’

2. They must contain at least one uppercase letter.
3. They cannot be all lowercase.
4. They cannot be all uppercase.
More below when we get to keys. */

11
11

{ // structure for filters. Unique filter name:
vendor Nare "

di ssol ve",

"di ssolve noise filter",
our C assl D,
// class id must be unique or suite id. Suite id ‘sdK1.
our Event | D,

NO_REPLY,
| MAGE_DI RECT_PARAMETER,
// direct parameter. See PIActions.h for other macros.
{ // parameters:

"anmount ",

// suite code, must be 1
// suite level, must be 1

// “AdobeSDK Dissolve”
// optional description

// unique event id ‘disS’

// never a reply

// parameter name

/* must be predefined parameter name and key from PIActions.h or unique
name and key id. See ‘disposition’ for example. */

keyAmount ,

// parameter key

/* must be predefined parameter key from PIActions.h or unique key id. */

t ypeFl oat ,

// parameter type

// typelnteger, typeBoolean, typeText, etc., all defined in PIActions.h

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997

b

"di ssol ve amount", // optional description
f1 agsSi ngl ePar anet er, // parameter flags
// Other parameters in PIActions.h

// Second parameter:
vendor Nane " di sposition",
// unique name “AdobeSDK disposition”

keyDi sposi tion, // unique key ‘disP’

t ypeMbod, // unique type ‘mooD’

"di ssol ve di sposition", // optional description

f 1 agsEnuner at edPar anet er // parameter flags for enum

vendor Nane entire imge”,

// unique name “AdobeSDK entire image”

keyEnt i r el mage, // unique key ‘entl’
t ypeBool ean,

fl agsSi ngl ePar anet er

} // close parameters
}, // close filter structure
{}, //plug-in classes for all other plug-ins here (we’ll use this later)
{}, //comparison ops (not supported)
{ // any enumerations. We have one, typeMood:
t ypeMood, // unique type ‘mooD’

{

vendor Name " clear”,

// unique name “AdobeSDK clear”

di sposi tionC ear, // unique key ‘moDO’
"cl ear headed", // optional description

vendor Name " cool ",

// unique name “AdobeSDK cool”

di sposi ti onCool , // unique key ‘moD1I’
"got the blues", // optional description

vendor Name " hot",

// unique name “AdobeSDK hot”

di sposi ti onHot , // unique key ‘moD2’
"red-faced", // optional description

vendor Name " sick",

// unique name “AdobeSDK sick”

di sposi tionSi ck, // unique key ‘moD3’
"green with envy" // optional description

} // close typeMood
} // close enumerations

} // close vendor suite
// close ‘aete’

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997

The terminology resource is parsed on the Macintosh side by a standard
template included with most compilers. On the Windows side, it is
precompiled along with the 'PlI PL' resource and then parsed by the
Photoshop resource file converter, CNVTPI PL. EXE. Either way, the

Di ssol ve. r file is converted into a working resource that is used at runtime
by the host.

4.3 Add the HasTerminology resource to your PiPL

Once | had a complete terminology resource, | have to tell Photoshop where
to find it, since a single plug-in file can have multiple modules in it. To do
that, a new PiPL type has been added, HasTerminology. It's syntax is:

HasTer m nol ogy { ourC assl D, ourEventlD, ResourcelD, uniqueString }

Just to review, in the case of examples, | defined:

#def i ne vendor Name " AdobeSDK" // unique vendor name

#define ourSuitelD ' sdKl' // must follow id guidelines
#define ourC assID ourSuitelD // must be unique, but can be suite id
#define ourEventID 'disS // must follow id guidelines

#define ResourcelD 16000 // typical id for plug-ins

#define uniqueString "" // empty

The AppleScript and AppleEvent architecture makes all key and name
dictionaries global, which is why unique key/name pairs are required. A
predefined dictionary of common terms is defined in Pl Acti ons. h. You can
use those keys and their obvious names (keyCol or, name “Color”) instead of
having to create unique key and name pairs. | recommend using the standard
keys whenever you possibly can.

If you define a uniqueString, then your plug-in will stay scoped only to
Photoshop and will not have to worry about having globally unique names.
But you still have to worry about conflicting with your own other suites using
that same uniqueString. This means that | would not have had to use key
names such as “AdobeSDK disposition”—I could have just used “disposition.”
| chose to keep everything scoped globally for future AppleScript/AppleEvent
compatibility.

5.0 Creating a scripting recording function

The next step for Dissolve was to record my parameters. There are a number
of utility routines defined inPl Utilities.handPlUtilities.ctomake
reading and writing from descriptors easier than having to access the
procedures directly through the callback structure. You cannot check a
scripting playback function, nor whether a terminology resource is correct,
until some parameters are handed to Photoshop.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 8

5.0.1 To use globals or not to use globals, that is the question!

For versions of Photoshop prior to 4.0, the only way to track global variables
was for you to allocate the memory yourself and store the global values in a
parameter handle that was handed back to the plug-in on subsequent
interations.

The Photoshop 4.0 scripting system will always pass your plug-in a descriptor
at every selector call. A descriptor is a set of keys and values, very much like a
set of predefined global values. Theoretically, | could use the scripting system
to track my global values, instead of passing my entire global struct to my
different routines and storing it in the parameter handle.

To make that change, I'd have to take out all my global variables and change
to reading and storing my parameters in the scripting descriptor on every
selector call. That's a lot of work, and | didn't feel | gained anything from
that.

Instead, | decided to stay with my global routines, and use the scripting
system to write out my final values and read in values to override my initial
global values. This made much more sense, and allows the plug-ins to operate
in @ non-scripting environment, such as older versions of Photoshop.

5.1 WriteScriptParams routine

| created a routine, Wi t eScri pt Par ans, that took the global values and
created a descriptor to hand back to the host.

| created a new source file, Di ssol veW t hScri pti ng. c, to hold the
playback and recording script functions.

OSErr WiteScriptParanms (GPtr gl obal s)
{

doubl e percent = gPercent;
/* I'm using a double because I want to use scripting type UnitFloat with unitPercent,
which is a double value. By using UnitFloat, my value will display in the actions palette

with a percent sign after it. Cool! */
Pl WiteDescriptor token = nil;
CSErr gotErr = noErr;

if (DescriptorAvailable())

{
/* DescriptorAvailable() is a macro from PIUtilities that checks to see if the

gStuff—>descriptorParameters callback parameter block is available. */

token = CpenWiter();
// OpenWriter() is a macro from PIUtilities that creates a new write descriptor.

if (token)

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 9

{ // we got a valid token to work with. Write our keys:
Pl Put Uni t Fl oat (t oken, keyAmount, unitPercent, &percent);
/* this is a macro from PIUtilities. It requires the token to write to, the key, the
unit (unitPercent, unitDistance, unitPixels, etc., defined in PIActions.h), and
then a pointer to the double. */

Pl Put Enun{t oken, keyDi sposition, typeMod, gD sposition);

/* another macro from PIUtilities. This writes an enumeration. It takes the token,
the key, the list of enumerations (the type) and the actual enumeration.
gDisposition is an unsigned32 that is either dispositionClear, dispositionCool,
dispositionHot, or dispositionSick. Note that if these weren’t defined in the
terminology resource, it would display nothing, or garbage. The enum stored
must match the keys in the enumeration list in the ‘aete’*/

i f (glgnoreSel ection)
Pl Put Bool (t oken, keyEntirel mage, gl gnoreSel ection);
/* Like I suggested, when you are writing boolean values, it makes the actions
palette look cleaner if you only write them when they are in their non-default
value. In this case, when glgnoreSelection is true (the default is to use the
selection) then the macro from PIUtilities writes the key and boolean value to
the descriptor in token. */

gotErr = CloseWiter(& oken);
/* This is a very useful routine defined in PIUtilities. When you close a token, it
returns with a handle to a descriptor. This descriptor is then what you pass to the
host for it to display in the actions palette (and subsequently return to you on
playback.) CloseWriter closes the token and stores the descriptor in the
gStuff->descriptorParameters callback parameter block, which is how a plug-in
hands back a descriptor. It then deallocates token and sets it to null. Lastly, it sets
the recordInfo parameter to dialogOptional, which is the standard return value to
tell the host “Only pop my dialog when the user wants it.” For a description of
recordInfo, see the Scripting chapter of the SDK and PIUtilities.*/
} // close token
} // close DescriptorAvailable
return gotEkrr;
} // end WriteScriptParams

5.2 Calling WriteScriptParams

I call Wi teScript Parans in DoFi ni sh, as that's the last routine the plug-in
executes before it completely returns to the host.

5.3 Running the plug-in and errors in scripting

Once |l completed my Wi t eScri pt Par ans routine, it was time to try it out to
see if the terminology resource, HasTerminology PiPL property, and
Wi teScri pt Par ans routine worked. | did this by placing an alias to the

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 10

plug-in in the Photoshop plug-ins directory, deleting my preferences file (to
start fresh) and running Photoshop.

| then opened a document and clicked the “document” icon in the actions
palette, which is the “New Action” button. | named it, then went to my plug-
in and executed it with some basic parameters. Finally, | clicked the “stop”
button in the actions palette, and checked to see if my plug-in had been
recorded.

Actions 2

Create new action or duplicate current action

Figure 3: Creating a new action in the actions
palette

Here is a list of issues and answers | found in debugging from this step:

5.3.1 My plug-in wasn’t in the filters menu.

This happened when | didn’t put the plug-in in the right directory, that
Adobe Photoshop was loading plug-ins from the preferences file (and not
scanning the directory to look for new plug-ins), or that my PiPL resource
wasn't valid.

5.3.2 My plug-in didn’t get recorded.

This was usually because | wasn't handing back a proper descriptor. | was
either handing back null, accidentally, or | was storing garbage data in the
descriptor which was messing everything up.

5.3.3 The actions palette says my plug-in‘s name, but none of its parameters
(such as “Using: Dissolve” but nothing else)

This means scripting system did not find a valid 'aet e' dictionary resource,
and/or it did not find a valid reference to the resource in the HasTerminology
property. It's usually either a bad reference number in the HasTerminology
property, a bad construction of the HasTerminology property, or a badly

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 1

formed dictionary resource. On the Macintosh side, the resource compiler will
complain if the dictionary resource of Di ssol ve. r is not formed properly. On
the Windows side, CNVTPI PL. EXE will complain. Unfortunately, neither will
complain if the keys and data you hand back in your descriptor do not match
the keys in your dictionary resource. It just won't display.

5.3.4 The actions palette displays labels with no data after them, such as
“Amount: %"

This was due to a messed up descriptor. | was either handing back invalid (or
improper) data (such as mixing up my keys and data types) or | was handing
back no descriptor (accidentally handing back null, for instance.)

5.3.5 The actions palette displays labels with scrambled data

This happened when | had different keys in my dictionary than | was storing
in my descriptor. If | had a t ypel nt eger for keyAmount but then stored
using t ypeFl oat, or if | was storing t ypeText and passed binary instead of
alphanumeric information in the handle.

5.4 Actions palette with Dissolve action

Figure 4 shows the actions palette once | got the proper descriptor recorded,
along with good dictionary and HasTerminology resources.

i@ EEE T T R e s i e
| Actions
e ¥ Lol R LG LR Sl LY
« = [o dissolve example
+ T AdobeSDE Dissolve
Arnount: 20%

ddobeSDE Disposition: AdobeSDE hot E
RN ES NS E

Figure 4: Dissolve filter actions palette display

6.0 Automating the plug-in for playback

Now that the plug-in was correctly recording and displaying a descriptor, it
was time to prepare it to read that descriptor when it was handed to me, and
honor those parameters.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 12

Taking the same approach to globals as the Wi t eScri pt Par ans routine, |
created a ReadScr i pt Par ans routine, with the purpose of opening, pulling
keys and values out of a descriptor, and overriding the global variables.

Bool ean ReadScri pt Paranms (GPtr gl obal s)

{

doubl e x = 0;

const doubl e m nVal ue = kPercent M n, maxVal ue = kPer cent Max;
// used to pass minimum and maximum values for PinUnitFloat

unsi gned | ong percent Uni t Pass = unit Percent;

// used to pass unitPercent to PinUnitFloat

Pl ReadDescr i pt or t oken = NULL;
Descri pt or Keyl D key = NULLID;
Descri pt or Typel D type = NULLI D,
i nt 32 flags 0;

Descri pt orKeyl DArray array {’ keyAmount, keyDi sposition, NULLID };
/* this array will be checked off as each key is read. It should return { keyNull, keyNull,
NULL }. If it doesn’t, then we’ve missed a key somewhere. See errMissingParameter,
below. */

OSErr stickyError = noErr;
Bool ean returnVal ue = true;

// ReadScriptParams returns with whether to pop the dialog or not (true = show dialog)

if (DescriptorAvailable())
{ //If descriptorParameters callback suite is available, do this:

t oken = OpenReader (array);

/* routine from PIUtilities. Opens the descriptor pointed to in

gStuff—>descriptorParameters, starts tracking keys in array, and returns a read token

to work with. */

if (token)

{ // got a valid read token. Now start grabbing keys until we get null:

whi l e (Pl Get Key(token, &key, &type, &flags))
{ // we got a valid (non-null) key. See which value it is:
switch (key)
{ // we can receive these keys in any order, so check to see which one:
case keyAnount:

Pl Get Pi nUni t Fl oat (t oken, &mi nVal ue, &mraxVal ue,
&per cent Uni t Pass, &x);
/* this is a routine from PIUtilities. It gets a unit-delimited value
(such as unitPixels, unitPercent) and automatically pins it between
minValue and maxValue. The value is returned in the last parameter,
which is the address of a double (in this case, “x”). If the value had to
be coerced (pinned to the low or high number) then this routine will
return the coercedParam error, but “x” will still be a valid number. */
gPercent = x; //assign to our global
br eak;

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 13

case keyDi sposition:
Pl Get Enum(t oken, &gDi sposition);
/* this is another routine from PIUtilities. It reads an enumerated
value. Since our global is an unsigned32, we can have PIGetEnum
store the value directly to the global. */
br eak;

case keyEntirel mage:
Pl Get Bool (t oken, &gl gnoreSel ecti on);

/* from PlUtilities, returns a boolean value. Since our global is a
boolean, we pass its address and have it set directly. */
br eak;

// ignore all other cases and classes

}

stickyError = C oseReader (&t oken);

/* CloseReader, from PIUtilities, automatically closes the read token, deallocates
it, and stores null in token. It returns an error code, indicating if any errors were
encountered during the getKey routine.

if (stickyError)
{

if (stickyError == errM ssingParaneter)
; /* errMissingParameter = -1715, which means one of the keys in
descriptorKeyIDArray was not found. Walk the array, and whatever is not
“typeNull” is the value not found in the descriptor. For this example, I
can go with the default values if I missed a key. If you cannot, or cannot
coerce a value from the keys you did receive, then you might want to show
your dialog. Whether or not you can show your dialog depends on
PlayDialog(). See below. */
el se
gResult = stickyError; //wegota real error. Report it.
} // close stickyError
} // close token
gQueryFor Paraneters = returnVal ue = Pl aybDi al og();
/* PlayDialog() examples playInfo inside gStuff—>descriptorParameters and returns
true if it is pluginDialogDisplay, which means “please display your dialog.” If it is
pluginDialogSilent, you must never show your dialog, and if it is
plugInDialogDontDisplay, then don’t display your dialog unless you need to. (Such as
if you missed a key you need and cannot coerce.) ¥/
} // close descriptorAvailable
return returnval ue; /*the global variable gQueryForParameters determines
whether I need to pop my dialog, but I'll return this value, as well. */
} // end ReadScriptParams

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 14

6.1 Calling ReadScriptParams and ValidateParameters

Calling ReadScr i pt Par ans is a little trickier. | want to call it after I've
initialized my globals, but before | need them. Sometimes, however, my plug-
in may be called and | may never get to the DoPar anet er s routine, which
initializes my globals. This happens in Adobe Premiere, which only executes
the plug-in completely once, then passes its parameters in for every frame of
a filmstrip. This also can occur when a plug-in has been recorded, then the
user quits Photoshop, runs it again, and executes the action right from the
palette. Literally, | may go to store values in my globals before I've allocated
space for them. Because of this danger, | decided to pull some of the
initialization routines out of DoPar anet er s and create an additional
routine, Val i dat ePar anet er s, which checks to see if the parameters are
valid, and if not, initializes them. That way | can call it right at the beginning
of my DoSt art routine, right before | dispatch to my user interface and code
which depends on my globals.

Anywhere before DoSt art that | might use my globals, | need to check them
for validity first. That could be in DoPar anet er s, DoPr epar e, or DoSt art :

voi d DoParaneters (GPtr gl obal s)

{ /* Called on selectorParameters. We may not always get here on our first iteration (for
instance, if a user created an action calling this plug-in, quit Photoshop, then ran Photoshop
again and immediately executed the action. ¥/

Val i dat ePar amet ers (gl obal s); // Check for valid parameters

gQuer yFor Par aneters = TRUE;
// If we're here, that means we're being called for the first time.

}

Now Val i dat ePar anet er s does most of the work of DoPar anet er s. This
allows me to call it from multiple routines, to make sure my globals are valid
and at least have default values before | use them:

voi d ValidateParaneters (GPtr gl obal s)
{ // Called whenever parameters need to be validated before used:
if (!gStuff->paraneters)
{ // Oops. Parameters haven’t been allocated yet. Do that now.
gSt uf f - >paraneters = NewHandl e ((long) sizeof (TParaneters));

if (!gStuff->paranmeters)

{ // Couldn’t do it. Must be out of memory.
gResult = mentul | Err;
return;

}

// Assign default global values:

gPercent = 50;

gDi sposition = di spositionCool;

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 15

gl gnoreSel ecti on = fal se;
gUseAdvance = fal se;
gRowskip = 1;
} // close gStuff—>parameters
}

My DoPr epar e routine does access some global variables, so | had to include

a call to Val i dat ePar anet er s before | used gRowSki p:

voi d DoPrepare (GPtr gl obals)
{ // Called on selectorPrepare to allocate memory requirements

short rowwWdth = 0O;
short total = 0;

| ong oneRow = O;

| ong i nCut Row = O;

| ong i nCut Andvask = O;

gSt uf f - >buf f er Space = O;

// Check maxSpace to determine if we can process more than a row at a time

Val i dat ePar aneters (gl obal s);
// check to make sure gRowSkip has been initialized BEFORE we use it!

total = gStuff->filterRect.bottom- gStuff->filterRect.top;

rowwdth = gStuff->filterRect.right - gStuff->filterRect.left;

oneRow = rowwdth * (gStuff->planes);
// one row of data and its planes

i nQut Row = oneRow * 2; //inData, outData
i nQut AndMask = i nQut Row + rowwW dt h;
// maskData is only one plane (alpha)

while (((inQut AndMask * gRowSki p) < gStuff->maxSpace) &&
(gRowski p < total))
gRowsSki p++;

gSt uf f - >maxSpace = gRowSki p * i nQut AndMask; // all we need
}

Finally, right at the top of DoSt ar t, | make a call to al i dat ePar anet er s to

make sure, before | use my globals, that they’ve been at least assigned
default values. Then | call ReadScr i pt Par ans to read the keys from the
descriptor, if there is one, and override the default global values with the

script parameters.

void DoStart (GPtr gl obals)
{ // Called from selectorStart. Main routine.
Val i dat ePar anet ers (gl obal s);

/* if stuff hasn't been initialized that we need, do it, then go check if we've got scripting

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997

16

commands to override our settings */

ReadScri pt Parans (gl obal s);
// update our parameters with the scripting parameters, if available

i f (gQueryForParaneters)
{ /* We got either plugInDialogDisplay or this is the first time the user has selected the
plug-in (so I have to pop the dialog to get the initial values) */
Pr onpt User For | nput (gl obal s); // Show the UI
gQuer yFor Par anet ers = FALSE;
}

// Rest of DoStart here.

6.2 Playback and recording questions: How do | know when...?

The obvious questions | had were:
“How do | know when I'm being played back?”
“When I'm being recorded?”
“When the user has selected me from the menu?”
“When the user has selected me in the actions palette?”

The answer to all of these is “You don't.”

A plug-in has no way of knowing whether it's being recorded, played back, or
directly interacted with by the user. This decision was made in the scripting
implementation to make it as seamless with the original interface as possible.
As long as you honor the pl ayl nf o flag, you will always know whether to
pop your dialog or not. This includes if the user has clicked the Dialog On icon
in the actions palette and is playing back your plug-in, or the user has
selected your plug-in directly from the menu.

+ [E |= Reduce Graininess

v =¥ izaussian Blur
Tagqgle dialag ondoff |

v Sharpen Edges
NN ES NEEE

Figure 5: Toggle dialog option in actions
palette

Whether the dialog has been requested or not, it makes sense to override any
globals with any scripting keys provided before deciding to display the dialog

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 17

-- that way, the user can double-click to re-record an action and your plug-in
will pop its dialog with the scripting parameters handed to it. Don’t make the
mistake (like | did, originally) of ignoring the scripting parameters just
because pl ugl nDi al ogDi spl ay has been requested. If it has been requested
from within an action, like Figure 5, the user will expect to see the
parameters from the actions palette in the plug-in’s dialog.

Now that we're deep in the pool of scripting and you’ve gone through the
simple example of the Dissolve filter plug-in, lets step up the complexity and
look at an Import Module. In my case, it was the DummyScan example from
the 3.0.5 SDK, which | renamed GradientImport, which was more in sync with
what it did.

7.0 Gradientimport import plug-in module

So you thought the Dissolve example was torture enough? Oh no, things get
much more fun when you try to apply scripting to a module that can be
controlled in a batch. Batch importing is an additional method for loading
numerous images at a time. This is in addition to the old multiple acquire
mechanism that is part of the import module interface.

The batch command is available from the pull-down menu attached to the
actions palette.

Batch

Source: | Import | ~|

From: [Gradientimport... ||
Cancel
Action: | RGB->Web->RGH E3
Destination: | Folder [|

Choose... fcehdMacPPC .. PshpGiFs:

] orerride Action “Save In” Commands

Figure 6: Batch dialog

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 18

With so many options, there are several approaches to updating an Import
module:

1. Leave it alone. The scripting system will automatically call the import
module for each import in a batch. Even vanilla plug-ins can be called
by the scripting system. Your dialog will be popped for every iteration,
which may not be desireable.

2. If it is a single import module, meaning it only returns one image at a
time, you can update it for scripting and record all the parameters
necessary for that single import. The batch mechanism will pass your
parameters to your plug-in automatically.

3. If it is a multiple acquire module, that means that all control for
opening multiple images happens within your plug-in. You can: a)
maintain detailed control over the iterative imports and use the
scripting system to call your plug-in with some default parameters,
such as preferences, and/or b) record every iterative import as another
scripting event.

The Gradientimport module uses the older multiple acquire mechanism. To
showcase the most robust scripting setup, | chose the last option, 3b, and
decided to make the plug-in record every event of its multiple acquire. That
way a user can blast off a single action and have multiple images open. This
makes the most sense for digital cameras that cache a set of images and let
the user import and color correct multiple images.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 19

7.1 Creating the Gradientimport terminology resource

7.1.1 Assessing the user interface

The first thing | did was examine the user interface dialog to determine what
parameters to represent in the terminology resource.

Gradientimport

Rows: | 256
Columns: |256

—Mode

iy Bitmap

i) Grayscale

i} Indexed Color
@ RGB Color

[] Invert

Figure 7: Gradientimport user interface

The items were:

1. An “OK" button (“Import”) which does not need to be recordable.
2. A "Cancel” button (“Done”) which does not need to be recordable.
3. An integer from 1 to 30,000 representing Rows

4. An integer from 1 to 30,000 representing Columns

5. A mutually-exclusive enumeration, “Mode"”, representing “Bitmap”,
“@Grayscale”, “Indexed Color”, or “RGB Color”.

6. A boolean, “Invert”

Below is the terminology resource | used for Gradientimport.

7.1.2 Gradientimport terminology resource

resource 'aete' (ResourcelD, purgeable)

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 20

{ // aete version and language specifiers:

1, 0, english, roman,
{ //vendor suite name:

vendor Nane,

"Adobe exanpl e plug-ins",

our Sui tel D,

1,

1,

{}, //structure for filters

{ // structure for all other plug-in types:
vendor Nare "

Gradi ent | nport",

// “AdobeSDK”'
// optional description
// suite id ‘sdK3’
// suite code, must be 1
// suite level, must be 1

// “AdobeSDK GradientImport”

"gradi entlnport nultiple inport",//optional description

{ // properties:

"<| nheritance>",

/* all non-filters inherit from a base class of the same name as their plug-in
type, such as classFormat, classExport, etc. See PIActions.h. Inheritance must
be the first property entry, even if there are no others. */

keyl nherits,

cl assl mport,

"parent class inport",
fl agsSi ngl eProperty,

// Second property:
"mul ti-inport",
keyMul ti |l mport | nfo,
classMul til mport Struct,
"multiple inport info",
flagsLi st Property

}, // close properties

{}, //elements (not supported)

// always

// classExport, classFormat, etc.
// optional description

// parameter flags

// property name

// unique key ‘mulK’
// unique class ‘mulS’
// optional description
// flags for a list

/* Normally you won’t need to create other classes, but since I'm going to be
storing a list of “import information” (the values needed to create one image),
I'm creating a class with the set of information, called “import info”: */

"import info",
classMul til mport Struct,
“class inmport info",
{ //import info class properties:
"rows",
keyRows,
t ypeFl oat ,
"nunmber of rows",
fl agsSi ngl eProperty,

"col utms",

// unique class name
// unique class ‘mulS’
// optional description

// property name

// standard key keyHorizontal
// property type

// optional description

// flags for property

// property name

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 21

keyCol ums,
t ypeFl oat ,

"nunber of col umms",
fl agsSi ngl eProperty,

"nmode",

keyQur Mode,

t ypeG adi ent Mode,
“col or node",

fl agsEnuner at edPr operty,

"invert",

keyl nvert,

t ypeBool ean,

"“invert inmage",

fl agsSi ngl eProperty
} // close class import info

{}, //elements (not supported)

} // close non-filter classes

{}, // comparison operators (not supported)

// standard key keyVertical

// property type
// optional description

// flags for property

// property name

// standard key keyMode*
// unique type ‘grmT’

// optional description

// flags for property

// property name

// unique key ‘invR’
// property type

// optional description
// flags for property

{ // Any enumerations go here. We have one, typeGradientMode:

t ypeG adi ent Mode,

{ // enumeration listing:
"bi t map",
our Bi t mapMbde,
"bi t map node",

"grayscal e",
our G ayscal eMvbde,
"grayscal e node",

"i ndexed color",

our | ndexedCol or Mbde,
"i ndexed col or npde",

“rgb color",
our RGBCol or Mbde,
"rgb col ornode”,

}, // close typeGradientMode

} // close enumerations

} // close vendor suite
}: //close ‘aete’

// unique type ‘grmT’

// property name
// unique key ‘bitM’
// optional description

// property name
// unique key ‘gryS’
// optional description

// property name
// unique key ‘indX’
// optional description

// property name
// unique key ‘rgbC’
// optional description

After the terminology resource was done, | added the HasTerminology to the

PiPL.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997

22

7.1.3 Gradientimport HasTerminology PiPL property

HasTer mi nol ogy { ourC assl D, ourEventlD, ResourcelD, uniqueString }

With:
#def i ne vendor Name " AdobeSDK" // unique vendor name
#define ourSuitelD ' sdK3' // must follow id guidelines
#define ourdassID 'graD // must be unique, but can be suite id

#define ourEventI D typeNull

/* must be typeNull or the host will think it’s a filter (event) instead of an import, export,
format, or selection (class) */

#define ResourcelD 16000 // typical id for plug-ins

#defi ne uniqueString "" // empty

7.2 Writing scripting parameters in Gradientimport

The next step was to create the routine to pass the scripting parameters back
out to Photoshop. Taking the same approach as with the Dissolve example, |
used my globals to pass their values across my different functions, then, at
the last minute, | pass the list of events back encapsulated in a descriptor.

Due to the nature of the multiple acquire mechanism, | needed a way to
track the multiple imports that would occur and then hand them back to the
scripting system. | decided to do this by creating an actual descriptor for each
import, then storing all the descriptors inside an encapsulating descriptor to
hand back to the host at the very end of execution. This took the form of:

1. In DoFi ni sh, create a descriptor and store it in a static array with a
maximum of kMaxDescr i pt or s (in this case, 50) via
Creat eDescriptor().

2. In DoFi ni sh, if multiple acquiring was not available, write the
descriptor out to the host in final form via
CheckAndW i teScri pt Parans().

3. In DoFi nal i ze, write the descriptor out to the host in final form via
CheckAndW i t eScri pt Parans() .

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 23

So, DoFi ni sh looked like this:

voi d DoFinish (GPtr gl obal s)

{
gSt uf f - >acqui reAgai n = gConti nuel nport;

// gContinuelmport tracks whether to continue importing

// Now create a descriptor and store it in our static array for saving later:
Creat eDescri ptor (gl obal s); //creates and stores descriptor in next open gArray

/1 If we can’t finalize, then we’ll have to write our parameters now:
if (!gStuff->canFinalize)
CheckAndW i t eScri pt Par ans(gl obal s); // writes script params
}

And DoFi nal i ze:

voi d DoFinalize (GPtr gl obals)

{

gQueryFor Paraneters = fal se; //reset global

C oseCur Di al og (gl obal s); //closes our UI

// We’re done. Write final parameters:

CheckAndW it eScri pt Par ams(gl obal s); // writes script params
}

| created a source file, Gradi ent | nport Scri pti ng. c, where | put all the
scripting routines.

voi d CreateDescriptor (GPtr globals)

{
Pl Type node = Get Gradi ent Mode(glLast Mbde) ;

// converts a global enumeration to the actual unsigned32 mode

const doubl e rows = glLastRows, colums = glLast Col s;
// converting globals to doubles for PutUnitFloat to use unitPixels value

Bool ean i nvert = gLastlnvert;
Pl Wit eDescri ptor token = NULL;

Pl Descri pt or Handl e h;

OSEr r stickyError = noErr;

if (DescriptorAvailable())
{ // PIUtilities routine to check for descriptorParameters callbacks succeeded.
token = OpenWiter(); // open new write descriptor
if (token)
{ // got the descriptor. Go ahead and write the keys into it:
Pl Put Uni t Fl oat (t oken, keyRows, unitPixels, & ows);
// puts our rows as pixels

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997

24

Pl Put Uni t Fl oat (t oken, keyCol ums, unitPixels, &colums);
// puts our columns as pixels

Pl Put Enun(t oken, keyQur Mode, typeG adi ent Mode, node);
// puts the exact enumeration (must match terminology resource!)

if (invert) PIPutBool (token, keylnvert, invert);
// again, only if non-default (true), writes “with invert”

stickyError = CloseWiteDesc(token, &h);

/* have to call P1Utilities CloseWriteDesc, which closes a specific token, and
returns a descriptor handle in “h”. If I called CloseWriter, it would close it and
automatically store it in gStuff—>descriptorParameters, which I don’t want, since
I’'m trying to create a static array of descriptors before passing them to the host. */
token = NULL; //justin case

if (!stickyError)
{ //aslong as we didn’t have an error writing:
if (gLastlmages >= kMaxDescri ptors)
{ // oops, went over our limit. Delete the last and replace it:
glLast | nages--; // just keep replacing last one
Pl Di sposeHandl e(gArray[gLast | mages]) ;
// dispose last handle
}

gArray [glLastlnmages++] = h; //stick handle on array

gArray [gLastlmages] = h = NULL; // null out end, just in case}
} // close stickyError
} // close token
} // close descriptorAvailable

} // end createDescriptor

The CheckAndW i t eScri pt Par ans routine checks for any data then calls the
Wi teScri pt Par ans routine:

OSErr CheckAndWiteScriptParams (GPtr gl obal s)

{

OSEr r gotErr = noErr;

if (gLastlnages) gotErr = WiteScriptParans(gl obals);

// if we have done at least one import (gLastImages > 0), write our scripting parameters
el se gotErr = gResult = userCancel edErr;

/* else error out of entire loop (if we don’t do this, we might end up with a single recorded
parameter, “Import using: GradientImport” which looks ugly. */

return gotErr;

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 25

OSErr WiteScriptParanms (GPtr gl obal s)

{

unsi gned32 count = glLastl| nages;
Pl Wit eDescri ptor token = NULL;

CSEr r

stickyError = noErr;

if (DescriptorAvailable())
{ // gStuff—>descriptorParameters callbacks available.
token = QpenWiter(); //open writedescriptor

if

(t oken)

{ // got our token. Write our keys.

Pl Put Count (t oken, keyMul tilmport Count, count);
/* A list is always preceded by its count. Note the count, and the following keys,
are stored as keyMultilmportCount for the entire list. */

for (count = 0; count < glLastlnages; count++)
{ // iterate through local array:
Pl Put Qbj (t oken, keyMul til nportlnfo,
classMul tilnmportStruct, &gArray [count]);
/* PIPutObj, from PlUtilities, automatically disposes the handle and sets it to
null. */

}

gLastl mages = 0; // reset
stickyError = Cl oseWiter(& oken);
/* closes descriptor, stores it in gStuff—>descriptorParameters, sets

plugInDialogOptional, and sets token to null. */

} // close token
} // close descriptorAvailable
return stickyError;
} // end WriteScriptParams

7.3 Testing the multiple import routine

Now that the write routines are done, | was able to test the multiple import
routines. | turned recording on in the actions palette and imported a couple
of images, one after the other, then dismissed the Gradientimport dialog.
Figure 8 shows the resulting display in the actions palette.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 26

| Actions

~ = Muliple irmports

L = Import

Uzing: &dobeSDE Gradientirnport
Multi-irnport: import info list
irnpatt info

Fiows: 256 pixels

Colurnns: 257 pixels

Mode: rgb color

irnpatt info

Fovws: 100 pixels

Colurnns: 101 pixels

Mode: grayscale

Wiith Inwert

EE|

EREE R

Figure 8: Gradientimport display in the actions palette

Note how the multiple import list is presented: as its label, “Multi-import”,
with its type label, “import info” and “list” after it. Then each individual item
of the list is headed with the type label “import info”. The first image is a
256x257 RGB image; the second image is a 100x101 grayscale inverted image.
Again, | only display a boolean when its in its non-default (“with invert” only,
as opposed to “without invert” and “with invert”). Another nice feature is
the display of the word “pixels” after the “Rows” and “Columns” entries.
This is thanks to Put Uni t Fl oat and uni t Pi xel s.

7.4 Playback of scripting parameters for Gradientimport

Now that | had Gradientimport correctly recording parameters, it was time to
modify it to read back parameters. This, too, is complicated, because it
requires reading from a list and dispatch parameters through the multiple
acquire loop, iterating through the list. | decided to break it out into this
logic:

1. At DoPr epar e, open any descriptor handed to me by the host and see
if there was a list in there, via QpenScr i pt Par ans.

2. At DoSt ar t, read the next descriptor object in the list via
ReadScr i pt Par ans and assign all its keys to globals via
SwitchScriptlnfo

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 27

3.

voi

{

voi

In DoSt ar t, as soon as the dialog is asked for, or if there is an error, we
no longer need to iterate through the list. Close it via

Cl oseScri pt Par ans and continue to create our own array to pass
back later.

d DoPrepare (GPtr gl obal s)
gSt uf f - >maxData = O;

i f (!'WarnBufferProcsAvail able ())
gResul t = user Cancel edErr; //exit. Already displayed alert.

// if finalization is available, we will want it:
gSt uf f - >want Fi nal i ze = true;

Val i dat ePar anet ers (gl obal s);
/* this should look familiar. Same functionality, but instead, checks variables pertinent to
GradientImport for default values and allocation, if needed. */

// now see if the scripting system has passed us anything:
OpenScri pt Parans (gl obal s);

d DoStart (GPtr gl obal s)
intle j = O;

// Insist on having the buffer procs:
i f (!'WarnBufferProcsAvail able ())

{
gResul t = user Cancel edErr; //should probably display err
return;

}

// Assume we won’t be coming back around for another pass unless explicitly set:
gSt uf f - >acqui reAgai n = gConti nuel nport = fal se;

// Validate our globals then override them with scripting parameters, if available:
Val i dat ePar aneters (gl obal s);
ReadScri pt Parans (gl obal s);

i f (gQueryFor Paraneters)
{ // open our dialog. If it’s already up, this returns with no err:
if (!OpenCQurDialog (gl obals))
{ // Couldn’t open our dialog. Abort! Abort!
gQueryFor Paraneters = fal se;
Cl oseScri pt Par ans(gl obal s); // Close up the open descriptor!
gResult = nenFul | Err; //return with memory full error
return;

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 28

// So far so good. Now dispatch our dialog routines:

if (!RunCurDial og (gl obals))

{ // User canceled. Close everything up.
gQueryFor Paraneters = fal se;
Cl oseCurDi al og (gl obal s); //deallocates dialog
Cl oseScri pt Par ans(gl obal s); // closes open descriptor
gResul t = user Cancel edErr; //exit without err
return;

// rest of DoStart here.

With DoPr epar e and DoSt ar t set up, there were four routines to be created.
OpenScr i pt Par ans, to open the descriptor; ReadScr i pt Par ans, toread the
next object in our list; Swi t chScri pt | nf 0, which reads keys from the object
and overrides the global values, and C oseScri pt Par ans, to close and tidy
up the open descriptor handed to the plug-in from Photoshop.

OpenScri pt Par ans was one of the easier ones, as all it had to do was watch
for the count key and find it in the descriptor handed in by the host:

voi d OpenScri pt Parans (GPtr gl obal s)

{
Descri pt or Keyl D key = 0;
Descri pt or Typel D type = 0;
intl1l6 | oop = O;
i nt 32 flags = O;
Bool ean | eaveEarly = fal se;

if (DescriptorAvailable())

{ // descriptor procs available. Now open the descriptor:
gToken = OpenReader (NULL) ;
/* Normally would pass an array indicating the expected keys. Problem is I don’t
know how many items are in the list until I open it. Therefore, I'm passing NULL to
indicate to the scripting system not to bother with a key array list. */
i f (gToken)
{ /*since we'll be reading from this descriptor in numerous routines, I store the
token in a global variable. ¥/

while (!l eaveEarly)

{ // Until we find our key or run out of keys in the descriptor, we’ll look for it:
| eaveEarly = Pl Get Key(gToken, &key, &type, &flags);
switch (key)

{ // Only interested in one case, keyMultilmportCount:
case keyMul til nport Count:
Pl Get Count (gToken, &(gCount));
| eaveEarly = true;
br eak;
/* 'm ignoring all other keys. All I'm looking for is the list, which will be
preceded by a count key. Once I find that, I drop out, eventually to be
called by the read routine. */
} // close switch
} // close leaveEarly

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 29

} // close gToken
gQuer yFor Paraneters = Pl ayDi al og();
// if true, show the dialog

} // close descriptorAvailable

} // end OpenScriptParams

The ReadScr i pt Par ans routine needs to take up where the

OpenScri pt Par ans routine left off: There is an open descriptor, gToken,
and it is sitting on an object which is another descriptor. | need to take that
descriptor, open it, parse all its keys, and override my globals. That happens in
Swi tchScri pt | nfo.

voi d ReadScri ptParans (GPtr gl obal s)

{

intl6 | oop = O;

i nt 32 flags = O;

Descri ptor Typel D type = 0;

Descri pt or Keyl D key = 0;

Pl Descri pt or Handl e subHandl e = NULL;

Pl ReadDescri pt or subToken = NULL;

OSEr r stickyError = noErr;

Descri ptor Typel D passType = classMultilnportStruct;

// GetObj needs to know what class type to expect

Descri pt or Keyl DArray subKeyl DArray =

{ keyRows, keyCol ums, keyCQurMbde, NULLID };

/* These are all expected. If keyInvert is there, it’s handled, just not checked off the list. If I
put it in the list, then the list will generally always return with an error, saying it didn’t
get keyInvert. I'd rather have it be a pleasant addition then always expecting it and rarely

getting it. */

if (DescriptorAvailable())
{ // Have descriptor procs.
if (gToken)
{ //global token is valid
if (gCount > 0)
{ // have another item waiting
gLastl nvert = false;
/* default is no invert. If we get the key, we’ll override the default. Otherwise,
we set it here, just in case we have an error below and don’t get a chance to set
it one way or the other. ¥/

Pl Get Obj (gToken, &passType, &subHandl e);
/* From PIUtilities, reads an object from descriptor gToken into subHandle of

type passType */
subToken = OpenReadDesc(subHandl e, subKeyl DArray);

/* Can’t use OpenReader() because that automatically uses the descriptor
passed in gStuff—>descriptorParameters. Instead, we use a subroutine,

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 30

OpenReadDesc, which opens handle subHandle and tracks array
subKeyIDArray, returning its descriptor token. */
i f (subToken)
{ // was able to open descriptor.
SwitchScriptinfo (gl obals, subToken);
// reads the keys from descriptor subToken and overrides globals

stickyError = O oseReadDesc(subToken); //done
subToken = NULL; //justin case

Pl Di sposeHand! e(subHandl e); // dispose handle
subHandl e = NULL; //justin case

if (stickyError)
{ // error occurred while reading keys

if (stickyError == errM ssi ngPar anet er)
; /*-1715 missing parameter. Walk keyIDArray to find which
one. */

el se

gResult = stickyError; //realerror occurred

}
gConti nuel nport = true; //we gotsomething, so keep going!

} // close subToken
gCount - -; // one less in list

} // close count
if (gCount < 1)
Cl oseScri pt Par ans(gl obal s); //that was the last one! Close it up!

} // close readToken
} // close descriptorAvailable
} // end ReadScriptParams

The Swi t chScri pt | nf o routine reads keys out of the descriptor, overriding
their global values:

void SwitchScriptlinfo (GPtr globals, PlReadDescriptor token)

{

Descri pt or Keyl D key = 0;

Descri pt or Typel D type = 0;

intl1l6 | oop = O;

i nt32 flags = O;

i nt 32 count = 0;

doubl e rows = kRowsM n, col ums = kCol umsM n;

// default value for rows and columns

Pl Type

node = our RGBCol or Mode;

// default value for mode is RGB
Bool ean invert = fal se;

// default for invert is false

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997

31

const doubl e m nRows = kRowsM n, nmaxRows = kRowsMax,
m nCol ums = kCol umsM n,
maxCol ums = kCol unmsMax;

/* PinUnitFloat will pin a value between minimum and maximum bounds, but, since
those values are passed as addresses, I assign these locals to the constant values */

unsi gned | ong pi xel sUni t Pass = unitPi xel s;
// have to pass address of unsigned long for unitPixels, so assign local to constant

whil e (Pl CGet Key(token, &key, & ype, &flags))
{ // continue while there are more keys

switch (key)

{

case keyRows:
Pl Get Pi nUni t Fl oat (t oken, &mi nRows, &nmaxRows,
&pi xel sUni t Pass, &rows);
/* pins the value between min and max, returnning it in “rows”. It will return
coercedParam if it had to coerce the value to between min and max */
gLast Rows = rows; //assign local double to global short
br eak;

case keyCol umms:
Pl Get Pi nUni t Fl oat (t oken, &mi nCol utms, &nmaxCol ums,
&pi xel sUni t Pass, &col ums);
// pins columns between min and max
gLast Col s = col ums; // assign local double to global short
br eak;

case keyQur Mode:
Pl Get Enum(t oken, &mnode) ;
// returns an enum -- must be the same as terminology enum list
gLast Mode = Get Pl ugl nMode(node) ;
// maps enum to ordinal
br eak;

case keylnvert:
Pl Get Bool (token, & nvert); //returnsboolean
glLastlnvert = invert; //assignsboolean to global
br eak;

} // close switch
} // close getkey
} // end SwitchScriptInfo

Cl oseScri pt Par ans is called from multiple places whenever there is an
error or the list is finished and the descriptor passed to the plug-in by
Photoshop should be closed. Note that the descriptor passed by the host is a
handle, and is the plug-in’s responsibility to deallocate. If | didn't call this
routine, we'd have a memory leak, unless | passed the exact same descriptor
back to the host. But | don’t pass the same descriptor back, because, even
while this open descriptor is being read and used to do multiple imports, etc.,
the Cr eat eDescri pt or, etc., routines are creating descriptors to pass back
to the host in Wi t eScri pt Par ans. Ergo, since I'm putting my own
descriptor in gSt uf f —>descr i pt or Par anet er s, | have to call

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 32

Cl oseScri pt Par ans, at least once, to make sure that the host descriptor is
disposed.

void O oseScriptParams (GPtr gl obal s)

{
CSErr stickyError = noErr;

i f (DescriptorAvailable())
{ // descriptor procs available
if (gToken)
{ // have our global token
stickyError = C oseReader (&gToken);
// closes token, deallocates memory, and sets it to null

if (stickyError)
{ //oops, got an error
if (stickyError == errM ssi ngPar anet er)

. // -1715 missing parameter. Sort of late, by now.
el se

gResult = stickyError; //realerror occurred

}
} // close token

} // close descriptorAvailable

gCount = 0; //reset global list count

gConti nuel nport = false; //finish importing and exit
} // end CloseScriptParams

7.5 Playing back Gradientimport

Now that the playback functions have been completed, the last task was to
record some actions and play them back to make sure the parameters were
honored. It's pretty cool to create a single action that contains multiple
imports inside of it, and you can see how the actions palette can get pretty
full.

8.0 Other issues and future implementation

8.1 Opaque data

You can see that the actions palette can fill up pretty fast with large multiple
imports. Opaque data is the term for information that you don’t want
displayed in the actions palette. This is sometimes useful because the data is
serial or registration information, it's complex, cannot be represented to the
user given the current interface (the actions palette), or simply looks yucky.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 33

In PIActions.h there is a key, “keyDat um’ (I couldn’t use keyDat a, it was
taken) that displays in the actions palette as:

Data: “..."

Which is an opaque display. keyDat um(and other opaque keys) must be
stored as fextual data. That means that if you want to store an array of
hexadecimal values, for instance, you must convert them to their textual
representation. To store:

$01 $02 $03 $04 $05
You must store it as:
“0102030405"

Or some such similar representation. The reason for this, and the reason
there are no opaque keys that simply do not display at all in the actions
palette, stems from the user interface issues of the AppleScript and
AppleEvent automation architecture. Without getting into too much detail,
it has to do with the fact that the user side of the architecture is made so that
a user may pass any English-like string into the automation system to be
parsed, such as:

tell application “Photoshop” to do Gaussian Blur with radius 2.0

Opaque data breaks this mold, but not completely, because opaque data, by
its definition, has no English equivalent. (Otherwise, you would just display it
in the actions palette like any other parameter.) Because strings and
sentences can be passed as automation and event requests, even the opaque
data must be able to be typed and passed as a simple sentence. So, by this
example, the user could pass the event:

tell application “Adobe Photoshop 4.0” to do Gadientlnport with data
“0102030405”

There is more detail on this in the AppleScript and AppleEvent Inside
Macintosh books, and references to them in the Photoshop SDK Guide.

8.2 External scripting

Scripts can be controlled via OLE on Windows and AppleScript on Macintosh.
Documentation on triggering scripts externally is in the Photoshop SDK Guide
in the Scripting chapter and in Appendix B: OLE Automation.

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 34

8.3 Saving filenames

What isn’t covered in the scope of this article, but is an interesting scripting
guestion, is what to do with filenames when saving them as scripting keys. |
recommend looking at the example Format Module in the SDK for an
example of this. The basic logic used by Photoshop for converting the
filename dialog into a scripting parameter, and, therefore, the logic |
recommend you use is:

1. If the user types a new name, save that entire path.

2. If the user leaves the default name, save the path to the folder, but
append the current filename to the path when saving.

More detail about this is can be found in the SDK guide and the Format
example.

8.4 Future features

Photoshop 4.0 scripting is available to all plug-in module types, and, as
stated, it can control non-scripting aware plug-ins by executing them as if a
user had selected them.

We recommend that you update your plug-in to be Photoshop 4.0 scripting-
aware. Because execute-only plug-ins pop their user interface every time
they’'re called from an action, a user running a batch on a folder of hundreds
of files is going to have a much more positive experience, and therefore
prefer, working with plug-ins that have been made scripting-aware.

| recommend playing with the batch control mechanism to get a good
understanding of how it interacts with the user, and also to look at how Save
and Open dialogs are handled, as far as scripting is concerned.

Next issue I'll take a look at some of the new plug-in types introduced in
Photoshop 4.0 and all the new API features related to those, including color
picker plug-ins and the new selection modules.

Hit#

Adobe Technical Journal Making a plug-in scripting-aware for Photoshop 4.0 Rev. 2January 15, 1997 35

	1.0 Abstract 1.0 Making a plug-in scripting-aware ...
	2.0 Introduction 2.0 Welcome to Adobe Photoshop 4....
	2.1 Converting 3.0.5 to 4.0
	2.2 Scope of this article
	2.2.1 More detail is in the SDK
	2.2.2 Macintosh or Windows?

	3.0 Starting out
	3.1 Basic scripting approach

	4.0 Creating a terminology resource
	4.1 AppleScript/AppleEvents
	4.2 Start with the examples
	4.3 Add the HasTerminology resource to your PiPL

	5.0 Creating a scripting recording function
	5.0.1 To use globals or not to use globals, that i...
	5.1 WriteScriptParams routine
	5.2 Calling WriteScriptParams
	5.3 Running the plug-in and errors in scripting
	5.3.1 My plug-in wasn’t in the filters menu.
	5.3.2 My plug-in didn’t get recorded.
	5.3.3 The actions palette says my plug-in’s name, ...
	5.3.4 The actions palette displays labels with no ...
	5.3.5 The actions palette displays labels with scr...

	5.4 Actions palette with Dissolve action

	6.0 Automating the plug-in for playback
	6.1 Calling ReadScriptParams and ValidateParameter...
	6.2 Playback and recording questions: How do I kno...

	7.0 GradientImport import plug-in module
	7.1 Creating the GradientImport terminology resour...
	7.1.1 Assessing the user interface
	7.1.2 GradientImport terminology resource
	7.1.3 GradientImport HasTerminology PiPL property

	7.2 Writing scripting parameters in GradientImport...
	7.3 Testing the multiple import routine
	7.4 Playback of scripting parameters for GradientI...
	7.5 Playing back GradientImport

	8.0 Other issues and future implementation
	8.1 Opaque data
	8.2 External scripting
	8.3 Saving filenames
	8.4 Future features

